
The great book

for eFORTH Linux
version 1.3 - 7 décembre 2023

Author

• Marc PETREMANN

Page 1

Contents

Introduction..5
Translation help..5

Why program in FORTH language on eForth Linux?..6
Preamble..6
Boundaries between language and application..6
What is a FORTH word?..7
A word is a function?...7
FORTH language compared to C language..8

What FORTH allows you to do compared to the C language.....................................9
But why a stack rather than variables?...10
Are you convinced?...10

Are there any professional applications written in FORTH?...10

Install eForth on Linux..12
Prerequisites...12
Install eForth Linux on Linux..13
Launch eForth Linux..13

A real 64-bit FORTH with eForth Linux..15
Values on the data stack..15

Values in memory..15
Word processing depending on data size or type...16

Conclusion..17

Editing and managing source files for eForth Linux..19
Text file editors...19

Storage on GitHub...19
Edit files for eForth Linux from Windows...20

Creation and management of FORTH projects with Netbeans.....................................21
Create an eForth project with Netbeans..21

Some good practices...23
Executing the contents of a file by eForth Linux..24

The Linux file system...26
Handling files..26

Organize and compile your files with eForth Linux...27
Organize your files..27
Chaining of files..28

Conclusion..29

Comments and debugging...30
Write readable FORTH code...30

Source code indentation..31
Comments..32

Stack comments..32
Meaning of stack parameters in comments...33
Word Definition Word Comments...33

Page 2

Textual comments...34
Comment at the beginning of the source code..34

Diagnostic and tuning tools..35
The decompiler...35
Memory dump...35
Data stack monitor..36

Perform unit tests...37
Creating and using assert(...37

Dictionary / Stack / Variables / Constants..39
Expand Dictionary...39

Dictionary management...39
Stacks and reverse Polish notation...40

Handling the parameter stack..41
The Return Stack and Its Uses...41
Memory usage..42

Variables...42
Constants...42
Pseudo-constant values...43
Basic tools for memory allocation...43

Local variables with eForth Linux..45
Introduction..45
The fake stack comment..45
Action on local variables..46

Data structures for eForth Linux...49
Preamble..49
Tables in FORTH...49

One-dimensional 64-bit data array..49
Words for table definitions...50
Read and write in a table...50

Management of complex structures..51

Real numbers with eForth Linux...53
The real ones with eForth Linux...53

Real number accuracy with eForth Linux...53
Real constants and variables..54
Arithmetic operators on real numbers...54
Mathematical operators on real numbers..54
Logical operators on real numbers..55
Integer ↔ real transformations..55

Displaying numbers and character strings..57
Change of numerical base..57
Definition of new display formats...58
Displaying characters and character strings...60
String variables...62

Text variable management word code..62
Adding character to an alphanumeric variable...64

Page 3

Delayed action words..66
Definition and usage of words with defer..66

Setting a Forward Reference..67
A practical case...68

Word Creation Words..70
Using does>...70

Color management example...71
Example, writing in pinyin..72

Processing UTF8 characters...74
UTF8 encoding..74

Retrieve the UTF8 character code entered using the keyboard...............................75
Displaying UTF8 characters from their code..76

Encoding from UTF8 character code point...77
Re-encoding by recursion..78
Generate a UTF8 character table..79

Detailed content of eForth Linux vocabularies..82
Version v 7.0.7.15...82

FORTH...82
ansi..83
asm..83
editor...84
graphics..84
graphics/internals..84
httpd..84
internals...84
posix..85
sockets...85
tasks..85
telnetd..85
termios...85
web-interface..85
x11...86

Page 4

Introduction
Since 2019, I manage several websites dedicated to FORTH language development for
ARDUINO and ESP32 boards, as well as the eForth web version:

• ARDUINO : https://arduino-forth.com/

• ESP32 : https://esp32.arduino-forth.com/

• eForth web : https://eforth.arduino-forth.com/

These sites are available in two languages, French and English. Every year I pay for
hosting the main site arduino-forth.com.

It will happen sooner or later – and as late as possible – that I will no longer be able to
ensure the sustainability of these sites. The consequence will be that the information
disseminated by these sites disappears.

This book is the compilation of content from my websites. It is distributed freely from a
Github repository. This method of distribution will allow greater sustainability than
websites.

Incidentally, if some readers of these pages wish to contribute, they are welcome:

• to suggest chapters ;

• to report errors or suggest changes;

• to help with the translation...

Translation help

Google Translate allows you to translate texts easily, but with errors. So I'm asking for
help to correct the translations.

In practice, I provide the chapters already translated in the LibreOffice format. If you want
to help with these translations, your role will simply be to correct and return these
translations.

Correcting a chapter takes little time, from one to a few hours.

To contact me : petremann@arduino-forth.com

Page 5

https://eforth.arduino-forth.com/
https://esp32.arduino-forth.com/
https://arduino-forth.com/

Why program in FORTH language on eForth Linux?

Preamble

I have been programming in FORTH since 1983. I stopped programming in FORTH in
1996. But I have never stopped monitoring the evolution of this language. I resumed
programming in 2019 on ARDUINO with FlashForth then
ESP32forth.

I am co-author of several books concerning the FORTH langage :

• Introduction au ZX-FORTH (ed Eyrolles - 1984 -
ASIN:B0014IGOXO)

• Tours de FORTH (ed Eyrolles - 1985 - ISBN-13: 978-
2212082258)

• FORTH pour CP/M et MSDOS (ed Loisitech - 1986)

• TURBO-Forth, manuel d'apprentissage (ed Rem CORP - 1990)

• TURBO-Forth, guide de référence (ed Rem CORP - 1991)

Programming in the FORTH language was always a hobby until 1992 when the manager
of a company working as a subcontractor for the automobile industry contacted me. They
had a concern for software development in C language. They needed to order an industrial
automaton.

The two software designers of this company programmed in C language: TURBO-C from
Borland to be precise. And their code couldn't be compact and fast enough to fit into the
64 kilobytes of RAM memory. It was 1992 and flash memory type expansions did not
exist. In these 64 KB of RAM, we had to fit MS-DOS 3.0 and the application!

For a month, C language developers had been twisting the problem in all directions, even
reverse engineering with SOURCER (a disassembler) to eliminate non-essential parts of
executable code.

I analyzed the problem that was presented to me. Starting from scratch, I created, alone,
in a week, a perfectly operational prototype that met the specifications. For three years,
from 1992 to 1995, I created numerous versions of this application which was used on the
assembly lines of several automobile manufacturers.

Boundaries between language and application

All programming languages are shared like this :

Page 6

• an interpreter and executable source code: BASIC, PHP, MySQL, JavaScript, etc...
The application is contained in one or more files which will be interpreted whenever
necessary. The system must permanently host the interpreter running the source
code;

• a compiler and/or assembler: C, Java, etc. Some compilers generate native code,
that is to say executable specifically on a system. Others, like Java, compile
executable code on a virtual Java machine.

The FORTH language is an exception. It integrates :

• an interpreter capable of executing any word in the FORTH language

• a compiler capable of extending the dictionary of FORTH words

What is a FORTH word?

A FORTH word designates any dictionary expression composed of ASCII characters and
usable in interpretation and/or compilation: words allows you to list all the words in the
FORTH dictionary.

Certain FORTH words can only be used in compilation: if else then for example.

With the FORTH language, the essential principle is that we do not create an application.
In FORTH, we extend the dictionary! Each new word you define will be as much a part of
the FORTH dictionary as all the words pre-defined when FORTH starts. Example:

: typeToLoRa (--)

 0 echo ! \ disable display echo from terminal

 ['] serial2-type is type

 ;

: typeToTerm (--)

 ['] default-type is type

 -1 echo ! \ enable display echo from terminal

 ;

We create two new words: typeToLoRa and typeToTerm which will complete the
dictionary of pre-defined words.

A word is a function?

Yes and no. In fact, a word can be a constant, a variable, a function... Here, in our
example, the following sequence :

 : typeToLoRa ...code... ;

would have its equivalent in C langage :

 void typeToLoRa() { ...code... }

In FORTH language, there is no limit between language and application.

Page 7

In FORTH, as in C language, you can use any word already defined in the definition of a
new word.

Yes, but then why FORTH rather than C?

I was expecting this question.

In C language, a function can only be accessed through the main function main(). If this
function integrates several additional functions, it becomes difficult to find a parameter
error in the event of a malfunction of the program.

On the contrary, with FORTH it is possible to execute - via the interpreter - any word pre-
defined or defined by you, without having to go through the main word of the program.

The FORTH interpreter is immediately accessible on eForth Linux.

The compilation of programs written in FORTH language is carried out in the ESP32 card
and not on the PC. There is no edit→Link→compile→Run cycle. Example:

: >gray (n -- n')

 dup 2/ xor \ n' = n xor (1 time right shift logic)

 ;

This definition is executable immediatly. The FORTH interpreter/compiler will parse the
stream and compile the new word >gray.

In the definition of >gray, we see the sequence dup 2/ xor. To test this sequence,
simply type it in the terminal. To execute >gray, simply type this word in the terminal,
preceded by the number to transform.

FORTH language compared to C language

This is my least favorite part. I don't like to compare the FORTH language to the C
language. But as almost all developers use the C language, I'm going to try the exercise.

Here is a test with if() in C language:

if(j > 13){ // If all bits are received

 rc5_ok = 1; // Decoding process is OK

 detachInterrupt(0); // Disable external interrupt (INT0)

 return;

}

Test with if in FORTH language (code snippet) :

var-j @ 13 > \ If all bits are received

 if

 1 rc5_ok ! \ Decoding process is OK

 di \ Disable external interrupt (INT0)

 exit

 then

Page 8

Here is the initialization of registers in C langage :

void setup() {

 // Timer1 module configuration

 TCCR1A = 0;

 TCCR1B = 0; // Disable Timer1 module

 TCNT1 = 0; // Set Timer1 preload value to 0 (reset)

 TIMSK1 = 1; // enable Timer1 overflow interrupt

}

The same definition in FORTH langage :

: setup

 \ Timer1 module configuration

 0 TCCR1A !

 0 TCCR1B ! \ Disable Timer1 module

 0 TCNT1 ! \ Set Timer1 preload value to 0 (reset)

 1 TIMSK1 ! \ enable Timer1 overflow interrupt

;

What FORTH allows you to do compared to the C language

We understand that FORTH immediately gives access to all the words in the dictionary,
but not only that. Via the interpreter, we also access the entire memory of eForth Linux :

hex here 100 dump

You should find this on the terminal screen :

3FFEE964 DF DF 29 27 6F 59 2B 42 FA CF 9B 84

3FFEE970 39 4E 35 F7 78 FB D2 2C A0 AD 5A AF 7C 14 E3 52

3FFEE980 77 0C 67 CE 53 DE E9 9F 9A 49 AB F7 BC 64 AE E6

3FFEE990 3A DF 1C BB FE B7 C2 73 18 A6 A5 3F A4 68 B5 69

3FFEE9A0 F9 54 68 D9 4D 7C 96 4D 66 9A 02 BF 33 46 46 45

3FFEE9B0 45 39 33 33 2F 0D 08 18 BF 95 AF 87 AC D0 C7 5D

3FFEE9C0 F2 99 B6 43 DF 19 C9 74 10 BD 8C AE 5A 7F 13 F1

3FFEE9D0 9E 00 3D 6F 7F 74 2A 2B 52 2D F4 01 2D 7D B5 1C

3FFEE9E0 4A 88 88 B5 2D BE B1 38 57 79 B2 66 11 2D A1 76

3FFEE9F0 F6 68 1F 71 37 9E C1 82 43 A6 A4 9A 57 5D AC 9A

3FFEEA00 4C AD 03 F1 F8 AF 2E 1A B4 67 9C 71 25 98 E1 A0

3FFEEA10 E6 29 EE 2D EF 6F C7 06 10 E0 33 4A E1 57 58 60

3FFEEA20 08 74 C6 70 BD 70 FE 01 5D 9D 00 9E F7 B7 E0 CA

3FFEEA30 72 6E 49 16 0E 7C 3F 23 11 8D 66 55 EC F6 18 01

3FFEEA40 20 E7 48 63 D1 FB 56 77 3E 9A 53 7D B6 A7 A5 AB

3FFEEA50 EA 65 F8 21 3D BA 54 10 06 16 E6 9E 23 CA 87 25

3FFEEA60 E7 D7 C4 45

This corresponds to the contents of memory.

And the C language couldn't do that?

Yes, but not as simple and interactive as in FORTH language.

Page 9

But why a stack rather than variables?

The stack is a mechanism implemented on almost all microcontrollers and
microprocessors. Even the C language leverages a stack, but you don't have access to it.

Only the FORTH language gives full access to the data stack. For example, to make an
addition, we stack two values, we execute the addition, we display the result: 2 5 + .
displays 7.

It's a little destabilizing, but when you understand the mechanism of the data stack, you
greatly appreciate its formidable efficiency.

The data stack allows data to be passed between FORTH words much more quickly than
by processing variables as in C language or any other language using variables.

Are you convinced?

Personally, I doubt that this single chapter will irremediably convert you to programming
in the FORTH language. When trying to master Linux, you have two options :

• program in C language and use the numerous libraries available. But you will
remain locked into the capabilities of these libraries. Adapting codes to C language
requires real knowledge of programming in C language and mastering the
architecture of LINUX. Developing complex programs will always be a problem.

• try the FORTH adventure and explore a new and exciting world. Of course, it won't
be easy. You will need to understand the architecture of LINUX, libarries, network...
In return, you will have access to programming perfectly suited to your projects.

Are there any professional applications written in FORTH?

Oh yes! Starting with the HUBBLE space telescope, certain components of which were
written in FORTH language.

The German TGV ICE (Intercity Express) uses RTX2000 processors to control motors via
power semiconductors. The machine language of the RTX2000 processor is the FORTH
language.

Page 10

This same RTX2000 processor was used for the Philae probe which attempted to land on a
comet.

The choice of the FORTH language for professional applications turns out to be interesting
if we consider each word as a black box. Each word must be simple, therefore have a
fairly short definition and depend on few parameters.

During the debugging phase, it becomes easy to test all the possible values processed by
this word. Once made perfectly reliable, this word becomes a black box, that is to say a
function in which we have absolute confidence in its proper functioning. From word to
word, it is easier to make a complex program reliable in FORTH than in any other
programming language.

But if we lack rigor, if we build gas plants, it is also very easy to get an application that
works poorly, or even to completely crash FORTH!

Good programming.

Page 11

Install eForth on Linux
eForth Linux is a very powerful version for Linux system. eForth Linux works on all recent
versions of Linux, including in a Linux virtual environment.

Prerequisites

You must have a working Linux system:

 installed on a computer using Linux as the only operating system;

 installed in a virtual environment.

If you only have a computer running Windows 10 or 11, you can install Linux in the WSL1
subsystem.

Windows Subsystem for Linux allows developers to run a GNU/Linux environment
(including most utilities, applications, and command-line tools) directly on Windows,
without modification and without overloading a machine, traditional virtual or a dual-boot
configuration.

The advantage of installing a Linux distribution in WSL allows you to have a Linux version
available in command mode in a few seconds. Here, Ubuntu is accessible from the
Windows file system and launches with a single click :

All instructions for installing WSL2 and then the Linux distribution of your choice are
available here:
 https://learn.microsoft.com/en-us/windows/wsl/install

By default, WSL2 offers to install the Ubuntu Linux distribution.

1 WSL = Windows Subsystem Linux

Page 12

Figure 1: Ubuntu accessible in one click
from WSL under Windows

https://learn.microsoft.com/en-us/windows/wsl/install

Install eForth Linux on Linux

If you launch Ubuntu (or any other version of Linux), you will find yourself in your user
directory by default. We start by accessing to usr/bin directory :

cd /usr/bin

We will now download the version of the ueForth Linux binary file :

 either from the home page of Brad NELSON's ESP32forth site:
 https://esp32forth.appspot.com/ESP32forth.html

 either from the eforth Google storage repository:
 https://eforth.storage.googleapis.com/releases/archive.html

In the list of proposed files, copy the web link mentioning Linux:

https://eforth.storage.googleapis.com/releases/ueforth-7.0.7.15.linux

On Linux, type the wget command :

sudo wget https://eforth.storage.googleapis.com/releases/ueforth-7.0.7.15.linux

The download will automatically drop the file into the previously selected folder. If you
took the link above, you end up with a file named ueforth-7.0.7.15.linux in this folder.

We rename this file with the mv command :

mv ueforth-7.0.7.15.linux ueforth

We check that everything went well with a simple dir ue* command.

We still have one last manipulation to perform, making this file executable by the Linux
system :

sudo chmod 755 ueforth

And it's done ! eForth Linux can now be used from any Linux directory.

Launch eForth Linux

To launch eForth when Linux boots :

cd ueforth
./ueforth.bin

eForth Linux starts immediately:

Page 13

https://eforth.storage.googleapis.com/releases/archive.html
https://esp32forth.appspot.com/ESP32forth.html

You can now test eForth and program your first applications in FORTH language.

PLEASE NOTE : this eForth version handles integers in 64-bit format. It's easy to check:

cell. \ display: 8

Or a dimension of 8 bytes for integers. This warning is essential if you are using FORTH
code written for 16 or 32 bit versions.

Good programming.

Page 14

Figure 2: eForth Linux is active

A real 64-bit FORTH with eForth Linux
Eforth Linux is a real 64-bit FORTH. What does it mean?

The FORTH language favors the manipulation of integer values. These values can be
literal values, memory addresses, register contents, etc.

Values on the data stack

When Eforth Linux starts, the FORTH interpreter is available. If you enter any number, it
will be dropped onto the stack as a 64-bit integer :

35

If we stack another value, it will also be stacked. The previous value will be pushed down
one position :

45

To add these two values, we use a word, here +:

+

Our two 64-bit integer values are added together and the result is dropped onto the stack.
To display this result, we will use the word .:

. \ display 80

In FORTH language, we can concentrate all these operations in a single line :

35 45 + . \ display 80

Unlike the C language, we do not define an int8 or int16 or int32 or int64 type.

With Eforth Linux, an ASCII character will be designated by a 64-bit integer, but whose
value will be bounded [32..255]. Example :

67 emit \ display C

Values in memory

eForth Linux allows you to define constants and variables. Their content will always be in
64-bit format. But there are situations where that doesn't necessarily suit us. Let's take a
simple example, defining a Morse code alphabet. We only need a few bytes :

• one to define number of marks in Morse code character

• one or more bytes for Morse code marks

create mA (-- addr)

 2 c,

 char . c, char - c,

Page 15

create mB (-- addr)

 4 c,

 char - c, char . c, char . c, char . c,

create mC (-- addr)

 4 c,

 char - c, char . c, char - c, char . c,

Here we define only 3 words, mA, mB and mC. In each word, several bytes are stored. The
question is: how will we retrieve the information in these words ?

The execution of one of these words deposits a 64-bit value, a value which corresponds to
the memory address where we stored our Morse code information. It is the word c@ that
we will use to extract the Morse code from each letter :

mA c@ . \ display 2

mB c@ . \ display 4

The first byte placed on the stack will be used to manage a loop to display the code of a
character in Morse code :

: .morse (addr --)

 dup 1+ swap c@ 0 do

 dup i + c@ emit

 loop

 drop

 ;

mA .morse \ display .-

mB .morse \ display -...

mC .morse \ display -.-.

There are plenty of certainly more elegant examples. Here we show a way to manipulate
8-bit values, our bytes, while operating these bytes on a 64-bit stack.

Word processing depending on data size or type

In all other languages, we have a generic word, like echo (in PHP) which displays any type
of data. Whether integer, real, string, we always use the same word. Example in PHP
language:

$bread = "Baked bread";

$price = 2.30;

echo $bread . " : " . $price;

// display Baked bread: 2.30

For all programmers, this way of doing things is THE STANDARD! So how would FORTH
do this example in PHP?

: bread s" Baked bread" ;

: price s" 2.30" ;

bread type s" : " type price type

Page 16

\ display Baked bread: 2.30

Here, the word type tells us that we have just processed a character string.

Where PHP (or any other language) has a generic function and a parser, FORTH
compensates with a single data type, but adapted processing methods which inform us
about the nature of the data processed.

Here is an absolutely trivial case for FORTH, displaying a number of seconds in HH:MM:SS
format:

: :##

 # 6 base !

 # decimal

 [char] : hold

 ;

: .hms (n --)

 <# :## :## # # #> type

 ;

4225 .hms \ display: 01:10:25

I love this example because, to date, NO OTHER PROGRAMMING LANGUAGE is
capable of achieving this HH:MM:SS conversion so elegantly and concisely.

You have understood, the secret of FORTH is in its vocabulary.

Conclusion

FORTH has no data typing. All data passes through a data stack. Each position in the stack
is ALWAYS a 64-bit integer!

That's all there is to know.

Purists of hyper-structured and verbose languages, such as C or Java, will certainly cry
heresy. And here, I will allow myself to answer them : why do you need to type your
data ?

Because it is in this simplicity that the power of FORTH lies : a single stack of data with an
untyped format and very simple operations.

And I'm going to show you what many other programming languages can't do, define new
definition words :

: morse: (comp: c -- | exec --)

 create

 c,

 does>

 dup 1+ swap c@ 0 do

 dup i + c@ emit

 loop

 drop space

Page 17

 ;

2 morse: mA char . c, char - c,

4 morse: mB char - c, char . c, char . c, char . c,

4 morse: mC char - c, char . c, char - c, char . c,

mA mB mC \ display .- -... -.-.

Here, the word morse: has become a definition word, in the same way as constant or
variable...

Because FORTH is more than a programming language. It is a meta-language, that is to
say a language to build your own programming language....

Page 18

Editing and managing source files for eForth Linux
As with the vast majority of programming languages, source files written in FORTH
language are in simple text format. The extension of files in FORTH language is free:

 txt generic extension for all text files;

 forth used by some FORTH programmers;

 fth compressed form for FORTH;

 4th other compressed form for FORTH;

 fs our favorite extension…

Text file editors

gedit file editor is the simplest:

If you use a custom file extension, such as fs , for your FORTH language source files,
Linux will recognize these files as plain text.

Storage on GitHub

GitHub 2website is, along with SourceForge 3, one of the best places to store source
files.

On GitHub, you
can share a

2 https://github.com/
3 https://sourceforge.net/

Page 19

Figure 3: editing autoexec.fs file with gedit on Linux

Figure 4: files storage on Github

working folder with other developers and manage complex projects. The Netbeans editor
can connect to the project and allows you to pass or retrieve file changes.

On GitHub , you can manage project forks . You can also make certain parts of your
projects confidential. Above are the branches in the flagxor/ueforth projects:

Edit files for eForth Linux from Windows

If you have installed a Linux version that runs in the WSL2 environment, it is perfectly
possible to edit Linux source files from Windows:

 launch Ubuntu from Windows

 Once Ubuntu is active, move the mouse pointer out of the WSL window. You return
to the Windows environment. Open Windows File Manager.

 in the left pane, click Linux ;

 in the main pane, click on the Linux version, here Ubuntu ;

Page 20

Figure 5: access to a branch in a project

Figure 6: accessing Linux files from Windows

 navigate to the eForth folder: home folder → User → ueforth →

 select the file to edit. For the example, we will open autoexec.fs ;

If you use an IDE, like Netbeans, here is how to configure this IDE to integrate your
eForth Linux development projects.

Creation and management of FORTH projects with
Netbeans

As a prerequisite, you must install Netbeans. Link for download and installation:
https://netbeans.apache.org/front/main/

Netbeans can be installed on Windows or Linux. For my part, having already installed
Netbeans under Windows, I am not going to overload my machine by installing a Linux
version. Consequently, the following explanations concern the management of an eForth
Linux project via WSL2 from Windows.

Create an eForth project with Netbeans

There, also a prerequisite:

 ueforth Linux is installed in Linux via WSL2 Windows.

 The source files are in a Windows folder:
 Linux → Ubuntu → home → userName → ueforth
where userName is the username defined during the Linux installation

 all eForth Linux source files are saved in the ueforth directory

Launch Netbeans. To create a new Netbeans project:

 click File → select New Project…

 New Project window , select Categories: PHP and in Projects: PHP Application
with Existing Sources

Page 21

Figure 7: Linux files visible from Windows

https://netbeans.apache.org/front/main/

 click Next >

 In the Name and Location → Sources Folder field , enter the path to the eForth
Linux source files

ueforth folder from Windows, launch File Explorer. At the bottom right, click Ubuntu .
Then click on the folders:
 home → userName → ueforth

In the navigation bar, at the top, you must find the path to the ueforth folder. Place the
mouse pointer in this banner. Copy the path:

Paste this path into the Netbeans field described above. Finish creating the new project in
Netbeans. You can now find all the files of your project in Netbeans:

Page 22

Figure 9: copy path to ueforth on Linux

Figure 8: création projet PHP

Now any editing, creating, modifying or deleting a file from Netbeans is immediately
reflected in your ueforth project folder on Linux.

Some good practices

The first good practice is to name your working files and folders correctly. You are
developing for eforth, so stay in the folder named ueforth .

For various tests, create a sandbox subfolder in this folder .

For well-constructed projects, create a folder per project. For example, you want to
develop a game, create a myGame subfolder .

tools subfolder . If you are using a file from this tools folder in a project, copy and paste
that file into that project's folder. This will prevent a modification of a file in tools from
subsequently disrupting your project.

For FORTH tests without a specific purpose, put them in a __sandbox folder .

The second best practice is to distribute the source code of a project into several files:

 config.fs to store project settings;

 documentation directory to store files in the format of your choice, related to the
project documentation;

Page 23

Figure 10: the new project is operational

 myApp.fs for your project definitions. Choose a fairly explicit file name. For
example, to manage your game, take the name game-commands.fs .

Executing the contents of a file by eForth Linux

From eForth Linux, executing the contents of a source file is done very simply by using the
word include followed by the file name:

include autoexec.fs

executes the contents of the autoexec.fs file .

If the file to read is in a subfolder, the file name will be preceded by the folder name.
Example to launch main.fs in the myGame subfolder :

cd mygame

include main.fs

If you have correctly installed ueforth , its launch may be followed by the name of the
source file to execute. On Linux:

cd ueforth

ueforth UTF8.fs

Page 24

Figure 11: exemple de nommage de fichiers source Forth

Linux logs all system commands, even after shutting down the PC and restarting it. It is
therefore very easy to restart project processing with just a few presses of the up arrow
key .

In summary, provided you have a Linux version accessible from Windows WSL2 , you
edit the source files with Netbeans from Windows. And you process project files from
Linux.

If you are in a full Linux environment , the manipulations are not very different. To launch
ueforth, you will need to open a command window in Linux.

Page 25

Figure 12: executing a file when launching ueforth

The Linux file system
eForth Linux integrates the essential components for accessing Linux system files.

To compile the contents of a source file, here the dumpTool.fs file in the tools folder ,
edited by gedit , type:

include /tools/dumpTool.fs

The word include is an eForth dictionary word.

To see the list of Linux files , use the word ls :

ls \ display :
.
..
autoexec.fs
blocks.fb
ueforth.bin
tools

 ok

Here we see the tools folder . Eforth Linux does not use syntax highlighting like Linux
does. To see the contents of this tools subfolder , type:

ls tools\display:
ls tools
.
..
dumpTool.fs

There is no option to filter file names or pseudo directories.

Handling files
To completely delete a file, use the word rm followed by the name of the file to be
deleted. Here we want to delete the myTest.fs file which was created and is no longer
used:

rm myTest.fs\display:
 ok

To rename a file, use the word mv . For example, we want to rename a myTest.txt file :

mv myTest.txt myTest.fs
ls\display:

.

..

autoexec.fs

blocks.fb

Page 26

myTest.fs

tools

To copy a file, use the word cp :

cp myTest.fs testColors.fs
ls\display:
.
..
autoexec.fs
blocks.fb
myTest.fs
testColors.fs
tools

To see the contents of a file, use the word cat :

cat autoexec.fs
\ displays contents of autoexec.fs

To save the contents of a string to a file, save the contents of the string with dump-file :

r| ." Insert my text into myTest" | s"myTest.fs" dump-file

We will not dwell on these manipulations which can also be carried out from Linux or a
source text editor.

Organize and compile your files with eForth Linux
We will see how to manage files for an application being developed with eForth Linux.

It is agreed that all files used are in ASCII text format.

The following explanations are given as advice only. They come from a certain experience
and aim to facilitate the development of large applications with eForth Linux.

All source files for your project are on your computer in the Linux environment. It is
advisable to have a subfolder dedicated to this project. For example, you are working on a
game named rubik, so you create a directory named rubik .

Regarding file name extensions, we recommend using the fs extension .

Editing files on a computer is carried out with any text file editor, gedit under Linux.

In these source files, do not use any characters not included in the ASCII code characters.
Some extended codes can disrupt program compilation.

Organize your files
In the following, all our files will have the extension fs .

Page 27

Let's start from our rubik directory on our computer.

The first file we will create in this directory will be the main.fs file . This file will contain
the calls to load all the other files of our application under development.

Example of content of our main.fs file :

\ RUBIK game main file
s" config.fs" included

In the development phase, the contents of this main.fs file will be loaded from a
RUBIK.fs file placed in the same folder as eForth and containing this:

cd rubik
s" main.fs" included

This causes the contents of our main.fs file to be executed . Loading of other files will
be executed from this main.fs file . Here we load the config.fs file of which here is an
extract:

0 value MAX_DEPTH
3 constant CUBE_SIZE

config.fs file we will put all the constant values and various global parameters used by
the other files.

It is advisable to put all the files of the same project in the folder of this project, here
rubik for our example.

Chaining of files

Each file can call a file with the word included . Here is an example of a file hierarchy
included in this way:

Page 28

Figure 13: sequence of RUBIK project files

Here, eForth calls a first file. Even if it is feasible, it is not recommended to create cascade
sequences. Prefer a succession of loading files from main.fs. Example :

DEFINED? --tempusFugit [if] forget --tempusFugit [then]

create --tempusFugit

s" strings.fs" included

s" RTClock.fs" included

s" clepsydra.fs" included

s" config.fs" included

s" dispTools.fs" included

In this succession of files, we use the strings.fs file . This is a so-called tool file . It is the
copy of a fairly general use file whose content extends the FORTH dictionary.

By working with a copy of the original file, you can make corrections or improvements
without risking altering the operation of the code in the original file. If these modifications
are consolidated, we can transfer them to the original file.

For each FORTH source code file, date the versions. This will allow you to find the
chronology of code modifications.

Conclusion
Files saved in Linux system are available permanently. If you access a Linux version in a
WSL2 management system from Windows, these files will also be accessible to the
Windows file system.

Page 29

Figure 14: enchaînement de fichiers

Comments and debugging
There is no IDE4 to manage and present code written in FORTH language in a structured
way. At worst you use an ASCII text editor, at best a real IDE and text files:

 edit or wordpad on Windows

 edit under Linux

 PsPad under windows

 Netbeans under Windows or Linux...

Here is a code snippet that could be written by a beginner:

: inGrid? { n gridPos -- fl } 0 { fl } gridPos getGridAddr for aft

getNumber n = if -1 to fl then then next drop fl ;

This code will be perfectly compiled by eForth Linux. But will it remain understandable in
the future if it needs to be modified or reused in another application?

Write readable FORTH code

Let's start with the name of the word to be defined, here inGrid?. eForth Linux allows
you to write very long word names. The size of the defined words has no influence on the
performance of the final application. We therefore have a certain freedom to write these
words :

 like object programming in JavaScript: rid.test.number

 the Camel wayCoding gridTestNumber

 for programmers wanting very understandable code is-number-in-the-grid

 programmer who likes concise code: gtn?

There is no rule. The main thing is that you can easily reread your FORTH code. However,
computer programmers in FORTH language have certain habits:

 constants in uppercase characters LOTTO_NUMBERS_IN_GRID

 word defining other words lottoNumber: , i.e. word followed by a colon;

 address transformation word >date , here the address parameter is incremented
by a certain value to point to the appropriate data;

 memory storage word date@ or date!

 Data display word .date

4 Integrated Development Environment = Integrated Development Environment

Page 30

And what about naming FORTH words in a language other than English? Here again, only
one rule: total freedom ! Be careful though, eForth Linux does not accept names written
in alphabets other than the Latin alphabet. However, you can use these alphabets for
comments:

: .date \ Плакат сегодняшней даты
 ….coded… ;

Or

: .date \海報今天的日期
 ….coded… ;

Source code indentation

Whether the code is two lines, ten lines or more has no effect on the performance of the
code once compiled. So, you might as well indent your code in a structured way:

 one line per word of control structure if else then , begin while repeat… For
the word if, we can precede it with the logical test that it will process;

 a line by execution of a predefined word, preceded if necessary by the parameters
of this word.

Example :

: inGrid? { n gridPos -- fl }

 0 { fl }

 gridPos getGridAddr

 for

 aft

 getNumber n =

 if

 -1 to fl

 then

 then

 next

 drop

 fl

 ;

If the code processed in a control structure is sparse, the FORTH code can be compacted:

: inGrid? { n gridPos -- fl }

 0 { fl } gridPos getGridAddr

 for aft

 getNumber n =

 if -1 to fl then

 then

 next

 drop fl

 ;

Page 31

This is often the case with case of endof endcase structures ;

: socketError (--)
 errno dup
 case
 2 of ." No such file " endof
 5 of ." I/O error " endof
 9 of ." Bad file number " endof
 22 of ." Invalid argument " endof
 endcase
 . quit
 ;

Comments

Like any programming language, the FORTH language allows the addition of comments in
the source code. Adding comments has no impact on the performance of the application
after compiling the source code.

In FORTH language, we have two words to delimit comments:

 the word (must be followed by at least one space character. This comment is
completed by the character) ;

 the word \ must be followed by at least one space character. This word is followed
by a comment of any size between this word and the end of the line.

The word (is widely used for stack comments. Examples:

dup (n -- nn)
swap (n1 n2 -- n2 n1)
drop (n --)
emit (c --)

Stack comments

As we have just seen, they are marked by (and) . Their content has no effect on the
FORTH code during compilation or execution. So we can put anything between (and) .
As for the stack comments, we will remain very concise. The -- sign symbolizes the
action of a FORTH word. The indications before -- correspond to the data placed on the
data stack before the execution of the word. The indications after -- correspond to the
data left on the data stack after execution of the word. Examples :

 words (--) means that this word does not process any data on the data stack;

 emit (c --) means that this word processes data as input and leaves nothing
on the data stack ;

 bl (-- 32) means that this word does not process any input data and leaves
the decimal value 32 on the data stack;

There is no limitation on the amount of data processed before or after execution of the
word. As a reminder, the indications between (and) are only there for information.

Page 32

Meaning of stack parameters in comments

To begin with, a small but very important clarification is necessary. This is the size of the
data on stack. With eForth Linux, the stack data takes up 8 bytes. So these are integers in
64-bit format. So what do we put on the data stack? With eForth Linux, it will ALWAYS
be 64 BIT DATA ! An example with the c word! :

create myDelemiter
 0 c,
64 myDelimiter c! (c addr --)

Here, the parameter c indicates that we stack an integer value in 64-bit format, but
whose value will always be included in the interval [0..255].

The standard parameter is always n . If there are several integers, we will number them:
n1 n2 n3 , etc.

We could therefore have written the previous example like this :

create myDelemiter

 0 c,

64 myDelimiter c! (n1 n2 --)

But it is much less explicit than the previous version. Here are some symbols that you will
see throughout the source codes:

 addr indicates a literal memory address or delivered by a variable;

 c indicates an 8-bit value in the interval [0..255]

 d indicates a double precision value.
Not used with eForth Linux which is already in 64-bit format;

 fl indicates a Boolean value, 0 or non-zero;

 n indicates an integer. 64-bit signed integer for eForth Linux;

 str indicates a character string. Equivalent to addr len --

 u indicates an unsigned integer

Nothing prevents us from being a little more explicit:

: SQUARE (n -- n-exp2)
 dup *
 ;

Word Definition Word Comments

Definition words use create and does> . For these words, it is advisable to write stack
comments like this:

\ define a command or data stream for SSD1306
: streamCreate: (comp: <name> | exec: -- addr len)
 create

Page 33

 here \ leave current dictionnary pointer on stack
 0 c, \ initial lenght data is 0
 does>
 dup 1+ swap c@
 \ send a data array to SSD1306 connected via I2C bus
 sendDatasToSSD1306
 ;

Here, the comment is split into two parts by the character | :

 on the left, the action part when the definition word is executed, prefixed by comp:

 on the right the action part of the word that will be defined, prefixed with exec:

At the risk of insisting, this is not a standard. These are only recommendations.

Textual comments

They are indicated by the word \ followed by at least one space character and
explanatory text:

\ store at <WORD> addr length of datas compiled beetween

\ <WORD> and here

: ;endStream (addr-var len ---)
 dup 1+ here
 swap - \ calculate cdata length
 \ store c in first byte of word defined by streamCreate:
 swap c!
 ;

These comments can be written in any alphabet supported by your source code editor:

\ 儲存在 <WORD> addr 之間編譯的資料長度

\ <WORD> 和這裡

: ;endStream (addr-var len ---)

 dup 1+ here

 swap - \ 計算 cdata長度

 \ 將 c 儲存在由 StreamCreate 定義的字的第一個位元組中：

 swap c!

 ;

Comment at the beginning of the source code

With intensive programming practice, you quickly find yourself with hundreds or even
thousands of source files. To avoid file choice errors, it is strongly recommended to mark
the start of each source file with a comment:

\ *************************************
\ Manage commands for OLED SSD1306 128x32 display
\ Filename: SSD10306commands.fs
\ Date: 21 may 2023
\ Updated: 21 may 2023
\ File Version: 1.0
\ MCU: ESP32-WROOM-32
\ Forth: ESP32forth all versions 7.x++

Page 34

\ Copyright: Marc PETREMANN
\ Author: Marc PETREMANN
\ GNU General Public License
\ **************************************

All this information is at your discretion. They can become very useful when you come
back to the contents of a file months or years later.

To conclude, do not hesitate to comment and indent your source files in FORTH language.

Diagnostic and tuning tools

The first tool concerns the compilation or interpretation alert:

3 5 25 --> : TEST (---)
 ok
3 5 25 --> [HEX] ASCII A DDUP \ DDUP don't exist

Here, the word DDUP does not exist. Any compilation after this error will fail.

The decompiler
In a conventional compiler, the source code is transformed into executable code
containing the reference addresses to a library equipping the compiler. To have executable
code, you must link the object code. At no time can the programmer have access to the
executable code contained in his library with the resources of the compiler alone.

With eForth Linux, the developer can decompile their definitions. To decompile a word,
simply type see followed by the word to decompile:

: C>F (øC --- øF) \ Conversion Celsius in Fahrenheit
 9 5 */ 32 +
 ;
see c>f
\ display:
: C>F
 9 5 */ 32 +
;

Many words in eForth's Linux FORTH dictionary can be decompiled.

Decompiling your words allows you to detect possible compilation errors.

Memory dump

Sometimes it is desirable to be able to see the values that are in memory. The word dump
accepts two parameters: the starting address in memory and the number of bytes to
display:

create myDATAS 01 c, 02 c, 03 c, 04 c,
hex
myDATAS 4 dump \ displays :
3FFEE4EC 01 02 03 04

Page 35

Data stack monitor

The contents of the data stack can be displayed at any time using the word .s . Here is
the definition of the word .DEBUG which exploits .s :

variable debugStack

: debugOn (--)
 -1 debugStack !
 ;

: debugOff (--)
 0 debugStack !
 ;

: .DEBUG
 debugStack @
 if
 cr ." STACK: " .s
 key drop
 then
 ;

To use .DEBUG, simply insert it in a strategic place in the word to be debugged:

\ example of use:

: myTEST

 128 32 do

 i .DEBUG

 emit

 loop

 ;

Here, we will display the contents of the data stack after execution of word i in our do
loop . We activate the focus and run myTEST :

debugOn
myTest
\ displays:
\ STACK: <1> 32
\ 2
\ STACK: <1> 33
\ 3
\ STACK: <1> 34
\ 4
\ STACK: <1> 35
\ 5
\ STACK: <1> 36
\ 6
\ STACK: <1> 37

\ 7
\ STACK: <1> 38

When debugging is enabled by debugOn , each display of the contents of the datastack
pauses our do loop. Run debugOff so that the myTEST word executes normally.

Page 36

Perform unit tests

eForth has the word assert allowing you to carry out tests. The best place to use this word
is in a tests.fs file. Example :

$1234 100div nip $34 = assert

$1234 100div drop $12 = assert

Here, we test the word 100div which leaves the quotient and the remainder of the
division by 256 (100 in hexadecimal) on the stack. The test should leave a true or false
value on the stack. If the test returns a null value, assert generates an ERROR
message.

Here is another example using assert :

$0080 bytesToUTF8 $c280 = assert

$0544 bytesToUTF8 $d584 = assert

$a894 bytesToUTF8 $eaa294 = assert

Here, we test the word bytesToUTF8. This word comes from code currently under
development. The values to test come from the online UTF8 documentation. These three
lines allow you to instantly test bytesToUTF8 with several typical cases. If the word does
not generate the expected result, assert will report that there is a test error.

Creating and using assert(

The word assert has a major drawback. If we carry out a lot of tests on different words,
in a file, here tests.fs, we only get an error report, but no information on the test line
which generated this error.

It turns out that the gForth version has the word assert(, the usage syntax of which is :

assert(0 >gray 0 =)

assert(1 >gray 1 =)

assert(2 >gray 3 =)

The gForth code has been adapted to display the incorrect content. Here is the source
code for this version:

-1 value ASSERT_LEVEL

variable assert-start

: assert((--)

 tib >in @ + assert-start !

 ASSERT_LEVEL 0= if

 POSTPONE (

 then

 ; immediate

:) (fl --)

Page 37

 0= if

 cr ." ASSERT : "

 assert-start @

 tib >in @ + over - 1- type

 -1 throw

 then

 ; immediate

In this code, we have an ASSERT_LEVEL value. If this value is set to zero,
assert(behaves like the word (.

Next, we have an assert-start variable. This variable is used to store the location of
assert(in the interpretation chain processed by eForth.

The word) tests the Boolean flag. If it is zero, it generates an error message and displays
the code after assert(which is causing the test error.

If you are on a development project, here is an example of typical file chaining in main.fs
:

s" gray.fs" included

s" assert.fs" included

s" tests.fs" included

The gray.fs file contains FORTH code currently being developed and fine-tuned. The
assert.fs file contains the assert(code. Finally, our tests.fs file contains the battery of
tests to be performed on the definitions currently being developed.

So, with a simple main.fs include sequence, the code under development is compiled,
then it is instantly tested through the unit tests written in tests.fs.

The word assert(was written to display nothing if the tests were executed successfully.

This development strategy with unit testing allows you to quickly detect code errors if you
modify a definition that is subject to unit testing.

Page 38

Dictionary / Stack / Variables / Constants

Expand Dictionary

Forth belongs to the class of woven interpretive languages. This means that it can
interpret commands typed on the console, as well as compile new subroutines and
programs.

The Forth compiler is part of the language and special words are used to create new
dictionary entries (i.e. words). The most important are : (start a new definition) and ;
(finishes the definition). Let's try this by typing :

: *+ * + ;

What happened? The action of : is to create a new dictionary entry named *+ and switch
from interpretation mode to compilation mode. In compile mode, the interpreter searches
for words and, rather than executing them, installs pointers to their code. If the text is a
number, instead of pushing it onto the stack, eFORTH Linux constructs the number in the
dictionary space allocated for the new word, following special code that puts the stored
number on the stack each time the word is executed. The execution action of *+ is
therefore to sequentially execute the previously defined words * and +.

Word ; is special. It is an immediate word and it is always executed, even if the system
is in compile mode. Which makes ; is twofold. First, it installs code that returns control to
the next external level of the interpreter, and second, it returns from compilation mode to
interpretation mode.

Now let's try this new word :

decimal 5 6 7 *+ . \ display 47 ok<#,ram>

This example illustrates two main work activities in Forth : adding a new word to the
dictionary, and trying it as soon as it has been defined.

Dictionary management

The word forget followed by the word to delete will remove all dictionary entries you
have made since that word :

: test1 ;

: test2 ;

: test3 ;

forget test2 \ delete test2 and test3 in dictionnary

Page 39

Stacks and reverse Polish notation

Forth has an explicitly visible stack that is used to pass numbers between words
(commands). Using Forth effectively forces you to think in terms of the stack. This can be
difficult at first, but as with anything, it gets much easier with practice.

In FORTH, The pile is analogous to a pile of cards with numbers written on them.
Numbers are always added to the top of the stack and removed from the top of the stack.
Eforth Linux integrates two stacks: the parameter stack and the return stack, each
consisting of a number of cells that can hold 64-bit numbers.

The FORTH input line :

decimal 2 5 73 -16

leaves the parameter stack as it is

Cell Content comment
0 -16 (TOS) Top of stack
1 73 (NOS) Next in stack
2 5
3 2

We will typically use zero-based relative numbering in Forth data structures such as
stacks, arrays, and tables. Note that when a sequence of numbers is entered like this, the
rightmost number becomes TOS and the leftmost number is at the bottom of the stack.

Let's continue with this:

+ - * .

The operations would produce successive stack operations :

After the two lines, the console displays :

decimal 2 5 73 -16 \ display: 2 5 73 -16 ok

+ - * . \ display: -104 ok

Note that eForth Linux conveniently displays the stack elements when interpreting each
line and that the value of -16 is displayed as a 64-bit unsigned integer. Furthermore, the

Page 40

2
5
73
-16

2
5
57

2
-52 -104

+ - * .

word . consumes data value -104, leaving the stack empty. If we execute . on the now
empty stack, the external interpreter aborts with a stack pointer error STACK UNDERFLOW
ERROR.

The programming notation where the operands appear first, followed by the operator(s) is
called Reverse Polish Notation (RPN).

Handling the parameter stack

Being a stack-based system, eForth Linux must provide ways to put numbers on the stack,
remove them and rearrange their order. We have already seen that we can put numbers
on the stack simply by typing them. We can also integrate numbers into the definition of a
FORTH word.

The word drop removes a number from the top of the stack thus putting the next one on
top. The word swap exchanges the first 2 numbers. dup copies the number at the top,
pushing all other numbers down. rot rotates the first 3 numbers. These actions are

presented below.

The Return Stack and Its Uses

When compiling a new word, eForth Linux establishes links between the calling word and
previously defined words that are to be invoked by the execution of the new word. This
linking mechanism, at runtime, uses the return stack. The address of the next word to be
invoked is placed on the back stack so that when the current word has finished executing,
the system knows where to move to the next word. Since words can be nested, there
must be a stack of these return addresses.

In addition to serving as a reservoir of return addresses, the user can also store and
retrieve from the return stack, but this must be done carefully because the return stack is
essential to program execution. If you use the return stack for temporary storage, you
must return it to its original state, otherwise you will likely crash eForth Linux. Despite the
danger, there are times when using return stack as temporary storage can make your
code less complex.

Page 41

2
5
73
-16

2
5
73
drop

2
73
5

swap

73
5
2
rot

73
5
2
2
dup

To store on the return stack, use >r to move the top of the parameter stack to the top of
the return stack. To retrieve a value, r> moves the top value from the return stack back to
the top of the parameter stack. To simply remove a value from the top of the return stack,
there is the word rdrop. The word r@ copies the top of the return stack back into the
parameter stack.

Memory usage

In eForth Linux, 64-bit numbers are fetched from memory to the stack by the word @
(fetch) and stored from the top to memory by the word ! (store). @ expects an address on
the stack and replaces the address with its contents. ! expects a number and an address
to store it. It places the number in the memory location referenced by the address,
consuming both parameters in the process.

Unsigned numbers that represent 8-bit (byte) values can be placed in character-sized
characters. memory cells using c@ and c!.

create testVar

 cell allot

$f7 testVar c!

testVar c@ . \ display 247

Variables

A variable is a named location in memory that can store a number, such as the
intermediate result of a calculation, off the stack. For example :

variable x

creates a storage location named x, which executes leaving the address of its storage
location at the top of the stack :

x . \ display address

We can then retrieve or store at this address :

variable x

3 x !

x @ . \ display: 3

Constants

A constant is a number that you would not want to change while a program is running.
The result of executing the word associated with a constant is the value of the data
remaining on the stack.

\ define VSPI pins

19 constant VSPI_MISO

23 constant VSPI_MOSI

18 constant VSPI_SCLK

Page 42

05 constant VSPI_CS

\ define SPI frequency port

4000000 constant SPI_FREQ

\ select SPI vocabulary

only FORTH SPI also

\ initialize the SPI port

: init.VSPI (--)

 VSPI_CS OUTPUT pinMode

 VSPI_SCLK VSPI_MISO VSPI_MOSI VSPI_CS SPI.begin

 SPI_FREQ SPI.setFrequency

 ;

Pseudo-constant values

A value defined with value is a hybrid type of variable and constant. We set and
initialize a value and it is invoked as we would a constant. We can also change a value like
we can change a variable.

decimal

13 value thirteen

thirteen . \ display: 13

47 to thirteen

thirteen . \ display: 47

The word to also works in word definitions, replacing the value following it with whatever
is currently at the top of the stack. You need to be careful that to is followed by a value
defined by value and not something else.

Basic tools for memory allocation

The words create and allot are the basic tools for reserving memory space and
attaching a label to it. For example, the following transcription shows a new dictionary
entry graphic-array :

create graphic-array (--- addr)

 %00000000 c,

 %00000010 c,

 %00000100 c,

 %00001000 c,

 %00010000 c,

 %00100000 c,

 %01000000 c,

 %10000000 c,

When executed, the word graphic-array stacks the address of the first entry.

Page 43

We can now access the memory allocated to graphic-array using the fetch and store
words explained earlier. To calculate the address of the third byte assigned to graphic-
array we can write graphic-array 2 +, remembering that the indices start at 0.

30 graphic-array 2 + c!

graphic-array 2 + c@ . \ display 30

Page 44

Local variables with eForth Linux

Introduction

The FORTH language processes data primarily through the data stack. This very simple
mechanism offers unrivaled performance. Conversely, following the flow of data can
quickly become complex. Local variables offer an interesting alternative.

The fake stack comment

If you follow the different FORTH examples, you will have noticed the stack comments
framed by (and) . Example:

\ addition two unsigned values, leaves sum and carry on the stack

: um+ (u1 u2 -- sum carry)

 \ here the definition

 ;

Here, the comment (u1 u2 -- sum carry) has absolutely no action on the rest of the
FORTH code. This is pure commentary.

When preparing a complex definition, the solution is to use local variables framed by {
and } . Example :

: 2OVER { a b c d }

 a b c d a b

 ;

We define four local variables a b c and d.

The words { and } are similar to the words (and) but do not have the same effect at all.
Codes placed between { and } are local variables. The only constraint: do not use variable
names that could be FORTH words from the FORTH dictionary. We might as well have
written our example like this :

: 2OVER { varA varB varC varD }

 varA varB varC varD varA varB

 ;

Each variable will take the value of the data stack in the order of their deposit on the data
stack. here, 1 goes into varA, 2 into varB, etc.:

--> 1 2 3 4

 ok

1 2 3 4 --> 2over

 ok

1 2 3 4 1 2 -->

Page 45

Our fake stack comment can be completed like this :

: 2OVER { varA varB varC varD -- varA varB varC varD varA varB }

The characters following -- have no effect. The only point is to make our fake comment
look like a real stack comment.

Action on local variables

Local variables act exactly like pseudo-variables defined by value. Example :

: 3x+1 { var -- sum }

 var 3 * 1 +

 ;

Has the same effect as :

0 value var

: 3x+1 (var -- sum)

 to var

 var 3 * 1 +

 ;

In this example, var is defined explicitly by value.

We assign a value to a local variable with the word to or +to to increment the content of
a local variable. In this example, we add a local variable result initialized to zero in the
code of our word:

: a+bEXP2 { varA varB -- (a+b)EXP2 }

 0 { result }

 varA varA * to result

 varB varB * +to result

 varA varB * 2 * +to result

 result

 ;

Isn't it more readable than this?

: a+bEXP2 (varA varB -- result)

 2dup

 * 2 * >r

 dup *

 swap dup * +

 r> +

 ;

Here is a final example, the definition of the word um+ which adds two unsigned integers
and leaves the sum and the overflow value of this sum on the data stack:

\ add two unsigned integers, leaves sum and carry on the stack

: um+ { u1 u2 -- sum carry }

 0 { sum }

Page 46

 cell for

 aft

 u1 $100 /mod to u1

 u2 $100 /mod to u2

 +

 cell 1- i - 8 * lshift +to sum

 then

 next

 sum

 u1 u2 + abs

 ;

Here is a more complex example, rewriting DUMP using local variables:

\ local variables in DUMP:

\ START_ADDR \ first address for dump

\ END_ADDR \ last address for dump

\ 0START_ADDR \ first address for loop in dump

\ LINES \ number of lines for dump loop

\ myBASE \ current numerical base

internals

: dump (start len --)

 cr cr ." --addr--- "

 ." 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F ------chars-----"

 2dup + { END_ADDR } \ store latest address to dump

 swap { START_ADDR } \ store START address to dump

 START_ADDR 16 / 16 * { 0START_ADDR } \ calc. addr for loop start

 16 / 1+ { LINES }

 base @ { myBASE } \ save current base

 hex

 \ outer loop

 LINES 0 do

 0START_ADDR i 16 * + \ calc start address for current line

 cr <# # # # # [char] - hold # # # # #> type

 space space \ and display address

 \ first inner loop, display bytes

 16 0 do

 \ calculate real address

 0START_ADDR j 16 * i + +

 ca@ <# # # #> type space \ display byte in format: NN

 loop

 space

 \ second inner loop, display chars

 16 0 do

 \ calculate real address

 0START_ADDR j 16 * i + +

 \ display char if code in interval 32-127

 ca@ dup 32 < over 127 > or

 if drop [char] . emit

Page 47

 else emit

 then

 loop

 loop

 myBASE base ! \ restore current base

 cr cr

 ;

forth

The use of local variables greatly simplifies data manipulation on stacks. The code is more
readable. Note that it is not necessary to pre-declare these local variables, it is enough to
designate them when using them, for example: base @ { myBASE }.

WARNING: if you use local variables in a definition, no longer use the words >r and r>,
otherwise you risk disrupting the management of local variables. Just look at the
decompilation of this version of DUMP to understand the reason for this warning:

: dump cr cr s" --addr--- " type

 s" 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F ------chars-----" type

 2dup + >R SWAP >R -4 local@ 16 / 16 * >R 16 / 1+ >R base @ >R

 hex -8 local@ 0 (do) -20 local@ R@ 16 * + cr

 <# # # # # 45 hold # # # # #> type space space

 16 0 (do) -28 local@ j 16 * R@ + + CA@ <# # # #> type space 1 (+loop)

 0BRANCH rdrop rdrop space 16 0 (do) -28 local@ j 16 * R@ + + CA@ DUP 32 < OVER 127 > OR

 0BRANCH DROP 46 emit BRANCH emit 1 (+loop) 0BRANCH rdrop rdrop 1 (+loop)

 0BRANCH rdrop rdrop -4 local@ base ! cr cr rdrop rdrop rdrop rdrop rdrop ;

Page 48

Data structures for eForth Linux

Preamble

Eforth Linux is a 64-bit version of the FORTH language. Those who have practiced FORTH
since its beginnings have programmed with 16-bit versions. This data size is determined
by the size of the elements deposited on the data stack. To find out the size in bytes of
the elements, you must execute the word cell. Running this word for ESP32forth :

cell . \ display 8

The value 8 means that the size of the elements placed on the data stack is 8 bytes, or
8x8 bits = 64 bits.

With a 16-bit FORTH version, cell will stack the value 2. Likewise, if you use a 32-bit
version, cell will stack the value 4.

Tables in FORTH

Let's start with fairly simple structures : tables. We will only discuss one- or two-
dimensional arrays.

One-dimensional 64-bit data array

This is the simplest type of table. To create a table of this type, we use the word create
followed by the name of the table to create :

create temperatures

 34 , 37 , 42 , 36 , 25 , 12 ,

temperatures \ push addr on stack

 0 cell * \ calculate offset 0

 + \ add offset to addr

 @ . \ display 34

temperatures \ push addr on stack

 1 cell * \ calculate offset 0

 + \ add offset to addr

 @ . \ display 37

We can factor the access code to the desired value by defining a word which will calculate
this address :

: temp@ (index -- value)

 cell * temperatures + @

 ;

0 temp@ . \ display 34

2 temp@ . \ display 42

Page 49

You will notice that for n values stored in this table, here 6 values, the access index must
always be in the interval [0..n-1].

Words for table definitions

Here's how to create a word definition of one-dimensional integer arrays :

: array (comp: -- | exec: index -- addr)

 create

 does>

 swap cell * +

 ;

array myTemps

 21 , 32 , 45 , 44 , 28 , 12 ,

0 myTemps @ . \ display 21

5 myTemps @ . \ display 12

In our example, we store 6 values between 0 and 255. It is easy to create a variant of
array to manage our data in a more compact way :

: arrayC (comp: -- | exec: index -- addr)

 create

 does>

 +

 ;

arrayC myCTemps

 21 c, 32 c, 45 c, 44 c, 28 c, 12 c,

0 myCTemps c@ . \ display 21

5 myCTemps c@ . \ display 12

With this variant, the same values are stored in four times less memory space.

Read and write in a table

It is entirely possible to create an empty array of n elements and write and read values in
this array :

arrayC myCTemps

 6 allot \ allocate 6 bytes

 0 myCTemps 6 0 fill \ fill this 6 bytes with value 0

32 0 myCTemps c! \ store 32 in myCTemps[0]

25 5 myCTemps c! \ store 25 in myCTemps[5]

0 myCTemps c@ . \ display 32

In our example, the array contains 6 elements. With eForth Linux, there is enough
memory space to process much larger arrays, with 1,000 or 10,000 elements for example.
It's easy to create multi-dimensional tables. Example of a two-dimensional array :

63 constant SCR_WIDTH

16 constant SCR_HEIGHT

create mySCREEN

 SCR_WIDTH SCR_HEIGHT * allot \ allocate 63 * 16 bytes

Page 50

 mySCREEN SCR_WIDTH SCR_HEIGHT * bl fill \ fill this memory with 'space'

Here, we define a two-dimensional table named mySCREEN which will be a virtual screen of
16 rows and 63 columns.

Simply reserve a memory space which is the product of the dimensions X and Y of the
table to use.

Management of complex structures

ESP32forth has the structures vocabulary. The content of this vocabulary makes it
possible to define complex data structures.

Here is simple example of structure :

structures

struct YMDHMS

 ptr field >year

 ptr field >month

 ptr field >day

 ptr field >hour

 ptr field >min

 ptr field >sec

Here, we define the YMDHMS structure. This structure manages the >year >month >day
>hour >min and >sec pointers.

The sole purpose of the YMDHMS word is to initialize and group the pointers in the complex
structure. Here is how these pointers are used :

create DateTime

 YMDHMS allot

2022 DateTime >year !

 03 DateTime >month !

 21 DateTime >day !

 22 DateTime >hour !

 36 DateTime >min !

 15 DateTime >sec !

: .date (date --) \ date is address of structure

 >r

 ." YEAR: " r@ >year @ . cr

 ." MONTH: " r@ >month @ . cr

 ." DAY: " r@ >day @ . cr

 ." HH: " r@ >hour @ . cr

 ." MM: " r@ >min @ . cr

 ." SS: " r@ >sec @ . cr

 r> drop

 ;

Page 51

DateTime .date

We defined word DateTime as simple table of 6 consecutive cells each 32 bits. Access to each
cell is with specific pointer. We can redefine our structure YMDHMS with i8 pointers to bytes.

structures

struct cYMDHMS

 ptr field >year

 i8 field >month

 i8 field >day

 i8 field >hour

 i8 field >min

 i8 field >sec

create cDateTime

 cYMDHMS allot

2022 cDateTime >year !

 03 cDateTime >month c!

 21 cDateTime >day c!

 22 cDateTime >hour c!

 36 cDateTime >min c!

 15 cDateTime >sec c!

: .cDate (date --)

 >r

 ." YEAR: " r@ >year @ . cr

 ." MONTH: " r@ >month c@ . cr

 ." DAY: " r@ >day c@ . cr

 ." HH: " r@ >hour c@ . cr

 ." MM: " r@ >min c@ . cr

 ." SS: " r@ >sec c@ . cr

 r> drop

 ;

cDateTime .cDate \ displays:

\ YEAR: 2022

\ MONTH: 3

\ DAY: 21

\ HH: 22

\ MM: 36

\ SS: 15

In this cYMDHMS structure, we kept the year in 32-bit format and reduced all other values
to 8-bit integers. We see, in the .cDate code, that the use of pointers allows easy access
to each element of our complex structure.…

Page 52

Real numbers with eForth Linux
If we test the operation 1 3 / in FORTH language, the result will be 0.

It's not surprising. Basically, eForth Linux only uses 64-bit integers via the data stack.
Integers offer certain advantages:

 speed of processing;

 result of calculations without risk of drift in the event of iterations;

 suitable for almost all situations.

Even in trigonometric calculations, we can use a table of integers. Simply create a table
with 90 values, where each value corresponds to the sine of an angle, multiplied by 1000.

But integers also have limits:

 impossible results for simple division calculations, like our 1/3 example;

 requires complex manipulations to apply physics formulas.

Since version 7.0.6.5, ESP32forth includes operators dealing with real numbers.

Real numbers are also called floating point numbers.

The real ones with eForth Linux
In order to distinguish real numbers, they must end with the letter "e":

3 \ push 3 on the normal stack
3e \ push 3 on the real stack
5.21e f. \ display 5.210000

It's the word f. which allows you to display a real number located at the top of the reals
stack.

Real number accuracy with eForth Linux
The word set-precision allows you to indicate the number of decimal places to display
after the decimal point. Let's see this with the constant pi :

pi f. \ display 3.141592
4 set-precision
pi f. \ display 3.1415

The limit precision for processing real numbers with eForth Linux is six decimal places :

Page 53

12 set-precision
1.987654321e f. \ display 1.987654668777

If we reduce the display precision of real numbers below 6, the calculations will still be
carried out with a precision to 6 decimal places.

Real constants and variables
A real constant is defined with the word fconstant :

0.693147e fconstant ln2 \ natural logarithm of 2

A real variable is defined with the word fvariable :

fvariable intensity
170e 12e F/ intensity SF! \ I=P/U --- P=170w U=12V
intensity SF@ f. \ display 14.166669

ATTENTION: all real numbers pass through the real number stack . In the case of a real
variable, only the address pointing to the real value passes through the data stack.

The word SF! stores a real value at the address or variable pointed to by its memory
address. Executing a real variable places the memory address on the classic data stack.

The word SF@ stacks the real value pointed to by its memory address.

Arithmetic operators on real numbers
eForth Linux has four arithmetic operators F+ F- F* F/ :

1.23e 4.56e F+ f. \ display 5.790000 1.23-4.56
1.23e 4.56e F- f. \ display -3.330000 1.23-4.56
1.23e 4.56e F* f. \ display 5.608800 1.23*4.56
1.23e 4.56e F/ f. \ display 0.269736 1.23/4.56

ESP32forth also has these words:

 1/F calculates the inverse of a real number;

 fsqrt calculates the square root of a real number.

5e 1/F f. \ display 0.200000 1/5
5e fsqrt f. \ display 2.236068 sqrt(5)

Mathematical operators on real numbers

eForth Linux has several mathematical operators:

 F** raises a real r_val to the power r_exp

 FATAN2 calculates the angle in radian from the tangent.

Page 54

 FCOS (r1 -- r2) Calculates the cosine of an angle expressed in radians.

 FEXP (ln-r -- r) calculates the real corresponding to e EXP r

 FLN (r -- ln-r) calculates the natural logarithm of a real number.

 FSIN (r1 -- r2) calculates the sine of an angle expressed in radians.

 FSINCOS (r1 -- rcos rsin) calculates the cosine and sine of an angle expressed in
radians.

Some examples :

 2e 3e f** f. \ display 8.000000
 2e 4e f** f. \ display 16.000000
 10e 1.5e f** f. \ display 31.622776

4.605170e FEXP F. \ display 100.000018

pi 4e f/
FSINCOS f. f. \ display 0.707106 0.707106
pi 2e f/
FSINCOS f. f. \ display 0.000000 1.000000

Logical operators on real numbers

eForth Linux also allows you to perform logic tests on real data:

 F0< (r -- fl) tests if a real number is less than zero.

 F0= (r -- fl) indicates true if the real is zero.

 f< (r1 r2 -- fl) fl is true if r1 < r2.

 f<= (r1 r2 -- fl) fl is true if r1 <= r2.

 f<> (r1 r2 -- fl) fl is true if r1 <> r2.

 f= (r1 r2 -- fl) fl is true if r1 = r2.

 f> (r1 r2 -- fl) fl is true if r1 > r2.

 f>= (r1 r2 -- fl) fl is true if r1 >= r2.

Integer ↔ real transformations

eForth Linux has two words to transform integers into reals and vice versa:

 F>S (r -- n) converts a real to an integer. Leave the integer part on the data stack
if the real has decimal parts.

 S>F (n -- r: r) converts an integer to a real number and transfers this real number
to the reals stack.

Example :

Page 55

35 S>F
F. \ display 35.000000

3.5e F>S . \ display 3

Page 56

Displaying numbers and character strings

Change of numerical base

FORTH does not process just any numbers. The ones you used when trying the previous
examples are single-precision signed integers. These numbers can be processed in any
number base, with all number bases between 2 and 36 being valid :

255 HEX. DECIMAL \displays FF

You can choose an even larger numerical base, but the available symbols will fall outside
the alpha-numeric set [0..9,A..Z] and risk becoming inconsistent.

The current numerical base is controlled by a variable named BASE and whose content
can be modified. So, to switch to binary, simply store the value 2 in BASE . Example:

2 BASE !

and type DECIMAL to return to the decimal numeric base.

ESP32forth has two pre-defined words allowing you to select different numerical bases:

 DECIMAL to select the decimal numeric base. This is the numerical base taken by
default when starting ESP32forth;

 HEX to select the hexadecimal numeric base.

 BINARY to select the binary numeric base.

Upon selection of one of these numerical bases, the literal numbers will be interpreted,
displayed or processed in this base. Any number previously entered in a number base
other than the current number base is automatically converted to the current number
base. Example :

DECIMAL \ base to decimal
255 \ stacks 255
HEX \ selects hexadecimal base
1+ \ increments 255 becomes 256
. \ displays 100

One can define one's own numerical base by defining the appropriate word or by storing
this base in BASE. Example :

: BINARY (---) \ selects the binary number base
 2 BASE ! ;
DECIMAL 255 BINARY . \ displays 11111111

The contents of BASE can be stacked like the contents of any other variable :

Page 57

VARIABLE RANGE_BASE \ RANGE-BASE variable definition
BASE @ RANGE_BASE ! \ storage BASE contents in RANGE-BASE
HEX FF 10 + . \ displays 10F
RANGE_BASE @ BASE ! \ restores BASE with contents of RANGE-BASE

In a definition : , the contents of BASE can pass through the return stack :

: OPERATION (---)
 BASE @ >R \ stores BASE on back stack

 HEX FF 10 + . \ operation of the previous example

 R> BASE ! ; \ restores initial BASE value

WARNING : the words >R and R> cannot be used in interpreted mode. You can only use
these words in a definition that will be compiled.

Definition of new display formats
Forth has primitives allowing you to adapt the display of a number to any format. With
ESP32forth, these primitives deal with integers numbers :

 <# begins a format definition sequence;

 # inserts a digit into a format definition sequence;

 #S is equivalent to a succession of # ;

 HOLD inserts a character into a format definition;

 #> completes a format definition and leaves on the stack the address and length of
the string containing the number to display.

These words can only be used within a definition. Example, either to display a number
expressing an amount denominated in euros with the comma as a decimal separator :

: .EUROS (n ---)

 <# # # [char] , hold #S #>

 type space ." EUR" ;

1245 .euros

Execution examples:

35 .EUROS \ displays 0,35 EUR

3575 .EUROS \ displays 35,75 EUR

1015 3575 + .EUROS \ displays 45,90 EUR

In the .EUROS definition, the word <# begins the display format definition sequence. The
two words # place the ones and tens digits in the character string. The word HOLD places
the character , (comma) following the two digits on the right, the word #S completes the
display format with the non-zero digits following , . The word #> closes the format
definition and places on the stack the address and the length of the string containing the
digits of the number to display. The word TYPE displays this character string.

Page 58

At runtime, a display format sequence deals exclusively with signed or unsigned 32-bit
integers. The concatenation of the different elements of the string is done from right to
left, i.e. starting with the least significant digits.

The processing of a number by a display format sequence is executed based on the
current numeric base. The numerical base can be modified between two digits.

Here is a more complex example demonstrating the compactness of FORTH. This involves
writing a program converting any number of seconds into HH:MM:SS format:

 :00 (---)

 DECIMAL # \ insert digit unit in decimal

 6 BASE ! \ base 6 selection

 # \ insert digit ten

 [char] : HOLD \ insertion character :

 DECIMAL ; \ return decimal base

: HMS (n ---) \ displays number seconds format HH:MM:SS

 <# :00 :00 #S #> TYPE SPACE ;

Execution examples :

59 HMS \ displays 0:00:59

60 HMS \ displays 0:01:00

4500 HMS \ displays 1:15:00

Explanation: The system for displaying seconds and minutes is called the sexagesimal
system. Units are expressed in decimal numerical base, tens are expressed in base six.
The word :00 manages the conversion of units and tens in these two bases for formatting
the numbers corresponding to seconds and minutes. For times, the numbers are all
decimal.

Another example, to define a program converting a single precision decimal integer into
binary and displaying it in the format bbbb bbbb bbbb bbbb:

: FOUR-DIGITS (---)

 # # # # 32 HOLD ;

: AFB (n ---) \ format 4 digits and a space

 BASE @ >R \ Current database backup

 2 BASE ! \ Binary digital base selection

 <#

 4 0 DO \ Format Loop

 FOUR-DIGITS

 LOOP

 #> TYPE SPACE \ Binary display

 R> BASE ! ; \ Initial digital base restoration

Execution example :

Page 59

DECIMAL 12 AFB \ displays 0000 0000 0000 0110

HEX 3FC5 AFB \ displays 0011 1111 1100 0101

Another example is to create a telephone diary where one or more telephone numbers are
associated with a surname. We define a word by surname :

: .## (---)

 # # [char] . HOLD ;

: .TEL (d ---)

 CR <# .## .## .## .## # # #> TYPE CR ;

: WACHOWSKI (---)

 0618051254 .TEL ;

WACHOWSKI \ displays: 06.18.05.12.54

This calendar, which can be compiled from a source file, is easily editable, and although
the names are not classified, the search is extremely fast.

Displaying characters and character strings
A character is displayed using the word EMIT :

65 EMIT \ displays A

The displayable characters are in the range 32..255. Codes between 0 and 31 will also be
displayed, subject to certain characters being executed as control codes. Here is a
definition showing the entire character set of the ASCII table:

variable #out

: #out+! (n --)

 #out +! \ increment #out

 ;

: (.) (n -- a l)

 DUP ABS <# #S ROT SIGN #>

;

: .R (n l --)

 >R (.) R> OVER - SPACES TYPE

;

: ASCII-SET (---)

 cr 0 #out !

 128 32

 DO

 I 3 .R SPACE \ displays character code

 4 #out+!

 I EMIT 2 SPACES \ displays character

 3 #out+!

 #out @ 77 =

 IF

 CR 0 #out !

 THEN

Page 60

 LOOP ;

Running ASCII-SET displays the ASCII codes and characters whose code is between 32
and 127. To display the equivalent table with the ASCII codes in hexadecimal, type HEX
ASCII-SET:

hex ASCII-SET

 20 21 ! 22 " 23 # 24 $ 25 % 26 & 27 ' 28 (29) 2A *

 2B + 2C , 2D - 2E . 2F / 30 0 31 1 32 2 33 3 34 4 35 5

 36 6 37 7 38 8 39 9 3A : 3B ; 3C < 3D = 3E > 3F ? 40 @

 41 A 42 B 43 C 44 D 45 E 46 F 47 G 48 H 49 I 4A J 4B K

 4C L 4D M 4E N 4F O 50 P 51 Q 52 R 53 S 54 T 55 U 56 V

 57 W 58 X 59 Y 5A Z 5B [5C \ 5D] 5E ^ 5F _ 60 ` 61 a

 62 b 63 c 64 d 65 e 66 f 67 g 68 h 69 i 6A j 6B k 6C l

 6D m 6E n 6F o 70 p 71 q 72 r 73 s 74 t 75 u 76 v 77 w

 78 x 79 y 7A z 7B { 7C | 7D } 7E ~ 7F ok

Character strings are displayed in various ways. The first, usable in compilation only,
displays a character string delimited by the character " (quote mark):

: TITLE ." GENERAL MENU";
 TITLE \ displays GENERAL MENU

The string is separated from the word ." by at least one space character.

A character string can also be compiled by the word s" and delimited by the character "
(quotation mark):

: LINE1 (--- adr len)
 S" E..Data logging" ;

Executing LINE1 places the address and length of the string compiled in the definition on
the data stack. The display is carried out by the word TYPE:

LINE1 TYPE \ displays E..Data logging

At the end of displaying a character string, the line break must be triggered if desired:

CR TITLE CR CR LINE1 CR TYPE
\ displays:
\ GENERAL MENU
\
\ E..Data logging

One or more spaces can be added at the start or end of the display of an alphanumeric
string :

SPACE \ displays a space character
10 SPACES \ displays 10 space characters

Page 61

String variables
Alpha-numeric text variables do not exist natively in ESP32forth. Here is the first attempt
to define the word string :

\ define a strvar

: string (comp: n --- names_strvar | exec: --- addr len)

 create

 dup

 c, \ n is maxlength

 0 c, \ 0 is real length

 allot

 does>

 2 +

 dup 1 - c@

 ;

A character string variable is defined like this:

16 string strState

Here is how the memory space reserved for this text variable is organized:

Text variable management word code

Here is the complete source code for managing text variables:

DEFINED? --str [if] forget --str [then]

create --str

\ compare two strings

: $= (addr1 len1 addr2 len2 --- fl)

 str=

 ;

\ define a strvar

: string (n --- names_strvar)

 create

 dup

 , \ n is maxlength

 0 , \ 0 is real length

 allot

 does>

 cell+ cell+

Page 62

 dup cell - @

 ;

\ get maxlength of a string

: maxlen$ (strvar --- strvar maxlen)

 over cell - cell - @

 ;

\ store str into strvar

: $! (str strvar ---)

 maxlen$ \ get maxlength of strvar

 nip rot min \ keep min length

 2dup swap cell - ! \ store real length

 cmove \ copy string

 ;

\ Example:

\ : s1

\ s" this is constant string" ;

\ 200 string test

\ s1 test $!

\ set length of a string to zero

: 0$! (addr len --)

 drop 0 swap cell - !

 ;

\ extract n chars right from string

: right$ (str1 n --- str2)

 0 max over min >r + r@ - r>

 ;

\ extract n chars left frop string

: left$ (str1 n --- str2)

 0 max min

 ;

\ extract n chars from pos in string

: mid$ (str1 pos len --- str2)

 >r over swap - right$ r> left$

 ;

\ append char c to string

: c+$! (c str1 --)

 over >r

 + c!

 r> cell - dup @ 1+ swap !

 ;

Page 63

\ work only with strings. Don't use with other arrays

: input$ (addr len --)

 over swap maxlen$ nip accept

 swap cell - !

 ;

Creating an alphanumeric character string is very simple :

64 string myNewString

Here we create an alphanumeric variable myNewString which can contain up to 64
characters.

To display the contents of an alphanumeric variable, simply use type . Example :

s" This is my first example.." myNewString $!

myNewString type \ display: This is my first example..

If we try to save a character string longer than the maximum size of our alphanumeric
variable, the string will be truncated:

s" This is a very long string, with more than 64 characters. It can't store
complete"

myNewString $!

myNewString type

\ displays: This is a very long string, with more than 64 characters. It
can

Adding character to an alphanumeric variable
Some devices, the LoRa transmitter for example, require processing command lines
containing the non-alphanumeric characters The word c+$! allows this code insertion:

32 string AT_BAND

s" AT+BAND=868500000" AT_BAND $! \ set frequency at 865.5 Mhz

$0a AT_BAND c+$!

$0d AT_BAND c+$! \ add CR LF code at end of command

The memory dump of the contents of our alphanumeric variable AT_BAND confirms the
presence of the two control characters at the end of the string:

--> AT_BAND dump

--addr--- 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F ------chars-----

3FFF-8620 8C 84 FF 3F 20 00 00 00 13 00 00 00 41 54 2B 42 ...?AT+B

3FFF-8630 41 4E 44 3D 38 36 38 35 30 30 30 30 30 0A 0D BD AND=868500000...

OK

Here is a clever way to create an alphanumeric variable allowing you to transmit a
carriage return, a CR+LF compatible with the end of commands for the LoRa transmitter:

Page 64

2 string $crlf

$0d $crlf c+$!

$0a $crlf c+$!

: crlf (--) \ same action as cr, but adapted for LoRa

 $crlf type

 ;

Page 65

Delayed action words
Deferred action words are defined by the definition word defer. To understand the
mechanisms and the interest in exploiting this type of word, let's look in more detail at the
functioning of the internal interpreter of the FORTH language.

Any definition compiled by : (colon) contains a sequence of coded addresses
corresponding to the code fields of the words previously compiled. At the heart of the
FORTH system, the word EXECUTE accepts as parameters these code field addresses,
addresses which we abbreviate by cfa for Code Field Address. Every FORTH word has a
cfa and this address is used by the internal FORTH interpreter :

' <word>

\ drops the cfa of <word> onto the data stack

Example:

' WORDS
\ stacks the WORDS cfa.

From this cfa , known as the only literal value, the execution of the word can be carried
out with EXECUTE:

' WORDS EXECUTE
\ executes WORDS

Of course, it would have been easier to type WORDS directly . From the moment a cfa is
available as the only literal value, it can be manipulated and notably stored in a variable :

variable vector

' WORDS vector !

vector @ .
\ displays cfa of WORDS stored in vector variable

You can run WORDS indirectly from the contents of vector:

vector @ EXECUTE

This launches the execution of the word whose cfa was stored in the vector variable
then put back on the stack before use by EXECUTE.

This is a similar mechanism that is exploited by the execution part of the defer definition
word. To simplify, defer creates a header in the dictionary, like a variable or
constant, but instead of simply dropping an address or value on the stack, it starts
execution of the word whose cfa was stored in the parametric area of the word defined
by defer .

Definition and usage of words with defer
The initialization of a word defined by defer is carried out by is :

Page 66

defer vector

' words is vector

Executing vector causes the word whose cfa was previously assigned to be executed:

vector \ exécute words

A word created by defer is used to execute another word without explicitly calling on
that word. The main interest of this type of word lies above all in the possibility of
modifying the word to be executed:

' page is vector

vector now executes page and no longer words.

We essentially use the words defined by defer in two situations:

 definition of a forward reference;

 definition of a word depending on the operating context.

In the first case, the definition of a before reference makes it possible to overcome the
constraints of the sacrosanct precedence of definitions.

In the second case, the definition of a word depending on the operating context makes it
possible to resolve most of the interfacing problems with an evolving software
environment, to maintain the portability of applications, to adapt the behavior of a
program to situations controlled by various parameters without harming software
performance.

Setting a Forward Reference
Unlike other compilers, FORTH does not allow a word to be compiled into a definition
before it is defined. This is the principle of precedence of definitions :

: word1 (---) word2 ;

: word2 (---) ;

This generates an error when compiling word1 , because word2 is not yet defined. Here's
how to get around this constraint with defer :

defer word2

: word1 (---) word2 ;

: (word2) (---) ;

' (word2) is word2

This time word2 compiled without errors. It is not necessary to assign a cfa to the
vectorized execution word word2 . It is only after the definition of (word2) that the
parameter area of word2 is updated. After assignment of the vectorized execution word
word2 , word1 will be able to execute the content of its definition without error. The
exploitation of words created by defer in this situation must remain exceptional.

Page 67

A practical case

You have an application to create, with displays in two languages. Here is a clever way by
exploiting a word defined by defer to generate text in French or English. To begin, we will
simply create a table of days in English:

:noname s" Saterday" ;

:noname s" Friday" ;

:noname s" Thursday" ;

:noname s" Wednesday" ;

:noname s" Tuesday" ;

:noname s" Monday" ;

:noname s" Sunday" ;

create ENdayNames (--- addr)

, , , , , , ,

Then we create a similar table for the days in French:

:noname s" Samedi" ;

:noname s" Vendredi" ;

:noname s" Jeudi" ;

:noname s" Mercredi" ;

:noname s" Mardi" ;

:noname s" Lundi" ;

:noname s" Dimanche" ;

create FRdayNames (-- addr)
, , , , , , ,

Finally we create our deferred action word dayNames and how to initialize it:

defer dayNames

: in-ENGLISH

 ['] ENdayNames is dayNames ;

: in-FRENCH

 ['] FRdayNames is dayNames ;

Here are now the words to manage these two tables:

: _getString { array length -- addr len }

 array

 swap cell *

 + @ execute

 length ?dup if

 min

 then

 ;

10 value dayLength

: getDay (n -- addr len) \ n interval [0..6]

Page 68

 dayNames dayLength _getString

 ;

Here's what running getDay does :

: .dayList { size -- }

 size to dayLength

 7 0 do

 i getDay type space

 loop

 ;

in-ENGLISH 3 .dayList cr \ display : Sun Mon Tue Wed Thu Fri Sat

in-FRENCH 1 .dayList cr \ display : D L M M J V S

In the second line, we only display the first letter of each day of the week.

In this example, we leverage defer to simplify programming. In web development, we
would use templates to manage multilingual sites. In FORTH, we simply move a vector in
a delayed action word. Here we only manage two languages. This mechanism can easily
be extended to other languages, because we have separated the management of text
messages from the purely application part.

Page 69

Word Creation Words
FORTH is more than a programming language. It's a meta-language. A meta-language is a
language used to describe, specify or manipulate other languages.

With eForth Linux, we can define the syntax and semantics of programming words beyond
the formal framework of basic definitions.

We have already seen the words defined by constant , variable , value . These
words are used to manage digital data.

In the Data Structures for eForth Linux chapter, we also used the word create. This word
creates a header allowing access to a data area stored in memory. Example :

create temperatures
34, 37, 42, 36, 25, 12,

Here, each value is stored in the parameters area of the word temperatures with the
word ,.

With eForth Linux, we will see how to customize the execution of words defined by
create.

Using does>

However, there is a combination of "CREATE" and "DOES>" keywords, which are often used
together to create custom words (vocabulary words) with specific behaviors.

Here's how it generally works in Forth:

 CREATE : this keyword is used to create a new data space in the eForth Linux
dictionary. It takes one argument, which is the name you give your new word;

 DOES> : this keyword is used to define the behavior of the word you just created
with CREATE . It is followed by a block of code that specifies what the word should
do when encountered during program execution.

Together it looks something like this:

forth
CREATE my-new-word
\ code to execute when encountering my-new-word
 DOES>
;

When the word my-new-word is encountered in the FORTH program, the code specified
in the does>... ; will be executed.

\ define a register, similar as constant
: defREG:

 create (addr1 -- <name>)

Page 70

 ,

 does> (-- regAddr)

 @

 ;

Here, we define the definition word defREG: which has exactly the same action as
constant . But why create a word that recreates the action of a word that already exists?

$3FF44004 constant DB2INSTANCE

or

$3FF44004 defREG: DB2INSTANCE

are similar. However, by creating our registers with defREG: we have the following
advantages:

 a more readable eForth Linux source code. We easily detect all the constants
naming an ESP32 register;

 we leave ourselves the possibility of modifying the does> part of defREG:
without then having to rewrite the lines of code which would not use defREG:

Here is a classic case, processing a data table:

\ definition word for one dimension arrays
:array (comp: -- <name> | exec: index <name> -- addr)
 create

 does>

 swap cell * +

 ;

array temperatures

 21 , 32 , 45 , 44 , 28 , 12 ,

0 temperatures @ . \ display 21

5 temperatures @ . \ display 12

The execution of temperatures must be preceded by the position of the value to extract
in this table. Here we only get the address containing the value to extract.

Color management example

In this first example, we define the word color: which will retrieve the color to select
and store it in a variable:

0 value currentCOLOR

\ define word as COLOR constant
: color: (n -- <name>)

 create

 ,

 does>

 @ to currentCOLOR

 ;

Page 71

$00 color: setBLACK

$ff color: setWHITE

Running the word setBLACK or setWHITE greatly simplifies the eForth Linux code.
Without this mechanism, one of these lines would have had to be repeated regularly :

$00 currentCOLOR !

Or

$00 constant BLACK
BLACK currentCOLOR !

Example, writing in pinyin

Pinyin is commonly used around the world to teach Mandarin Chinese pronunciation, and
it is also used in various official contexts in China, such as street signs, dictionaries, and
learning textbooks. It makes learning Chinese easier for people whose native language
uses the Latin alphabet.

To write Chinese on a QWERTY keyboard, the Chinese generally use a system called
"pinyin input". Pinyin is a system of romanization of Mandarin Chinese, which uses the
Latin alphabet to represent the sounds of Mandarin.

On a QWERTY keyboard, users type Mandarin sounds using pinyin romanization. For
example, if someone wants to write the character "你" ("nǐ" meaning "you" in English),
they can type "ni".

In this very simplified code, you can program pinyin words to write in Mandarin. The
following code only works in eForth Linux :

\ Work well in eForth Linux

internals

: chinese:

 create (c1 c2 c3 --)

 c, c, c,

 does>

 3 serial-type

 ;

forth

To find the UTF8 code of a Chinese character, copy the Chinese character, from Google
Translate for example. Example :

Good Morning --> 早安 (Zao an)

Copy 早 and go to PuTTy terminal and type :

key key key \ followed by key <enter>

paste the character 早. eForth Linux should display the following codes:

230 151 169

Page 72

For each Chinese character, we will use these three codes as follows:

169 151 230 chinese: Zao
137 174 229 chinese: Year

Use :

Zao An \ display 早安

Admit that programming like this is something other than what you can do in C language.
No?

Page 73

Processing UTF8 characters
It was while carrying out some character entry tests on the keyboard that a small problem
appeared. If we do this:

key \ and press a key, push 97 on stack

So far everything is normal. But on the keyboard, we also have, in France on AZERTY
keyboard, accented characters and certain characters like € . Let's try key again and try
to recover the code for this character:

key

€

 ok

226 --> ��
ERROR: NOT FOUND!��

The first code retrieved has the value 226. but there are two other codes which disrupt
the FORTH interpreter. Let's see this solution:

key key key

€

 ok

226 130 172

Oh…?!?!? Three codes?

UTF8 encoding

Let's take the three codes 226 130 172 in hexadecimal: E2 82 AC . If we do this:

$e2 emit

It says ok . Mmmm…. Let's check in a loop that is in the range 32-255:

: dispChars (--)

 256 32 do

 i emit

 loop

 ;

Running dispChars displays this:

!"#$%&'()*+,-./0123456789:;<=>?
@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~��������

 ������� ����������������������������������
 ���������������������������������� �������������

ok

eForth Linux has some problems displaying characters with an ASCII code greater than
127. If we repeat this test with eForth Windows, the same word dispChars displays this:

 !"#$%&'()*+,-./0123456789:;<=>?
@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~Çüéâäàåçêëèï

Page 74

îìÄÅÉæÆôöòûùÿÖÜø£Ø×ƒáíó úñÑªº¿®¬½¼¡«»░▒▓ │┤ÁÂÀ©╣║╗╝¢
¥┐└┴┬├─┼ãÃ╚╔╩╦╠═╬¤ðÐÊËÈıÍÎÏ┘┌█▄¦Ì▀ÓßÔÒõ ÕµþÞÚÛÙýÝ¯´ ±‗¾¶§÷¸°¨·¹³²■ ok

For characters whose ASCII code is in the range [32..127], the characters are identical.
For characters with an ASCII code greater than 127 (7F in hexadecimal), eForth Linux
cannot display valid characters.

To display the € character in eForth Linux, we have simple solutions:

: .eur (--)

 ." €" ;

Or

: .€ (--)

 ." €" ;

Or

: .eur (--)

 226 emit 130 emit 172 emit ;

But we do not resolve the problem of characters whose ASCII code is greater than 127. To
resolve this problem, we must look at UTF8 encoding, the one used by eForth Linux.

In UTF8 encoding, ASCII characters are encoded on 7 bits:

 0 bbb-bbbb 1 byte encoding

For all other characters, the coding is 2 or 3 or 4 bytes:

 11 0 b-bbbb 10 bb-bbbb 2-byte encoding

 111 0- bbbb 10 bb-bbbb 10 bb-bbbb encoding on 3 bytes

 1111 -0 bbb 10 bb-bbbb 10 bb-bbbb 10 bb-bbbb 4-byte encoding

For all codes greater than $7F, the first most significant bits determine the number of
bytes encoding a UTF8 character. Let's return to our character € . The first code that
comes up when executing key is $E2. In binary: 111 00010 . Here we have three bits at
1. This means that the € character is coded on 3 bytes.

Let's test with the UTF8 character 𭫷 . An execution of key brings up code 240, in binary:
1111 0000 . We have 4 bits at 1. The character 𭫷 is coded over four bytes.

Retrieve the UTF8 character code entered using the keyboard

key executions to be executed based on the character entered on the keyboard:

 we execute a first key

 if the code is greater than 127, we slide this code 1 bit to the left, then we test bit
b7. If this bit is 1 we re-execute key .

Page 75

Here is the code capable of entering any UTF8 character:

0 value keyUTF8

: toKeyUTF8 (c --)

 keyUTF8 8 lshift or to keyUTF8

 ;

The word toKeyUTF8 receives an 8-bit keyboard code and concatenates it with the
contents of the keyUTF8 value . The idea is to recover the UTF8 encoding into a single
final numeric value.

\ execute key recursively

: getKeys (n --)

 1 lshift dup $80 and \ test if bit b7 is not null

 if recurse \ re-execute xkey

 else drop then \ otherwise, drop n

 key toKeyUTF8 \ and execute key 1 or may times

 ;

The word getkeys processes the code returned by the first execution of key . It
performs a one-byte shift to the left and tests bit b7 (sequence 1 lshift dup $80 and
). If this bit is 1, the word is re-executed (if recurse sequence).

Recursion allows you to control the number of iterations of getKeys without requiring
complex loops and tests. The recursion stops as soon as a bit b7 is 0. The recursion exit
takes place after then . The word getKeys will execute the sequence key toKeyUTF8
as many times as there are recursive calls.

\ key version for UTF8 characters

: ukey

 key to keyUTF8

 keyUTF8 $7F > if \ if 1st key code > $7F

 keyUTF8 1 lshift getKeys \ execute xkey

 then

 keyUTF8

 ;

The word ukey can now replace the word key to retrieve the UTF8 code of any character
in the UTF8 character set:

hex

ukey . \ paste € and <enter>, display : E282AC

This is confirmed by the online UTF8 documentation.

Displaying UTF8 characters from their code

If we look at the definition of the word emit , we find this:

: emit

 >R RP@ 1 type rdrop

Page 76

 ;

RP@ 1 type code sequence strictly limits the display of a single-byte code character. This
hex E282AC emit sequence will not work. Likewise :

: uemit

 >R RP@ 4 type rdrop

 ;

\ hex e282ac uemit display : ok���

The problem comes from the order of the bytes of a digital value. A memory dump of the
stack gives this:

--addr--- 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F ------chars-----

0802-00FA 00 00 00 00 00 00 AC 82 E2 00 00 00 00 00 08 01���

We must therefore flip the bytes like a sock:

\ reverse integer bytes, example:

\ hex 1a2b3C --> 3c2b1a

: reverse-bytes (n0 --)

 0 { result }

 3 for

 result 100 * to result

 100 u/mod swap +to result

 next

 drop

 result

 ;

we can now rewrite our word uemit :

\ emit UTF8 encoded character

: uemit (n --)

 reverse-bytes

 >r rp@ 4 type

 rdrop

 ;

Running hex E282AC uemit displays: € .

In conclusion, with ukey and uemit , we now have words allowing us to process non-
ASCII characters. So, with a Greek keyboard:

hex

ukey \ press key Σ display : CEA3

uemit \ display Σ

Encoding from UTF8 character code point

Each abstract character is associated with a unique number. This number is called a code

point. The code point is a number between 1 and 17×2 16 , or potentially 1,114,112
characters. A code point is denoted U+ followed by the hexadecimal value of the code

Page 77

point.
Example: U+00E9 for the character e .

The problem, as you have already understood, is that you cannot do hex e9 emit with
eForth Linux.

To have the correct UTF8 encoding sequence b1-b0 (for byte1 byte0), you must switch
the two most significant bits of byte e9 to b1. We cut e9 like this:

hex
e9 40 /mod

Which leaves us on the stack of data r and q resulting from the execution of /mod , or in
our example the values 29 and 3 . To transform this into a two-byte value, we then
execute:

100 * +

Which now leaves us on the data stack with the hexadecimal value 329 .

Now let's return to the double-byte UTF8 encoding format:

 110 b-bbbb 10 bb-bbbb

Here, in yellow, we have a masking value, 1100000010000000 in binary, c080 in
hexadecimal. It is this mask value c080 that we will apply to the result of our previous
calculation. Here is the complete coding sequence from code point e9 :

e9 40 /mod

100 * +

c080 or

Which leaves us with the final c3a9 code , which is now usable with uemit :

c3a9 uemit \ display char : é

We will now automate this….

Re-encoding by recursion

In the sequence n 40 /mod , we recover at each iteration a remainder and a quotient.
When an iteration gives a zero quotient, we stop. This lends itself wonderfully to
processing by recursion:

$40 constant BYTE_DIVISOR

\ split n modulo BYTE_DIVISOR

: mod40Recombine (n --)

 BYTE_DIVISOR /mod

 dup 0 > if

 recurse

 then

 $100 * +

Page 78

 ;

The word mod40Recombine splits the value n into rq pairs . If q is equal to 0, we exit
the recursion after then and we execute $100 * + as many times as was cut.

It remains to apply a mask based on the size of the re-encoded code point. Here are the
limit values for two, three, or four byte encodings:

$8000 constant LIMIT_2_BYTES

$10000 constant LIMIT_3_BYTES

$200000 constant LIMIT_4_bytes

For each of these limit values, here are the masks to apply:

$C080 constant MASK_2_BYTES

$E08080 constant MASK_3_BYTES

$F0808080 constant MASK_4_BYTES

And finally, here is the word bytesToUTF8 which applies the madque adapted to the size
of the code point number:

: bytesToUTF8 (n -- n')

 >r

 r@ LIMIT_2_BYTES < if

 r> mod40Recombine

 MASK_2_BYTES OR

 exit

 then

 r@ LIMIT_3_BYTES < if

 r> mod40Recombine

 MASK_3_BYTES OR

 exit

 then

 r@ LIMIT_4_BYTES < if

 r> mod40Recombine

 MASK_4_BYTES OR

 exit

 then

 abort" UTF8 conversion failed"

 ;

There are certainly ways to make it more elegant. This definition has the merit of working.
As input, we stack the code point to be re-encoded. As output, we obtain the UTF8 code
usable by uemit .

Generate a UTF8 character table

The idea is to take the first and last code point numbers from a character table. These
values are processed in a loop to generate a character table.

Let's start with a few useful words:

8 constant LINE_LIMIT

Page 79

\ CR only if i MOD = 0

: cr? (i --)

 1+ LINE_LIMIT mod

 0= if

 cr

 then

 ;

\ display hex value format NNNN

: .###### (n --)

 <# # # # # # # #> type

 ;

The word cr? executes a newline if the display reaches n columns. The word .######
displays a 6-digit n value. Finally here is the display loop:

: utf8Set { start stop -- }

 base @ { currentBase }

 hex

 stop 1+ start do

 i .######

 space

 i bytesToUTF8 uemit

 2 spaces

 i cr?

 loop

 currentBase base !

 ;

Here is the definition to display the UTF8 character table of the Greek and Coptic
character set:

: greekAndCopt (--)

 $370 $3ff utf8Set

 ;

Its execution displays this:

Page 80

The numbers indicate the code point of each character. Here, we see for example that the
character φ has the code point 3D5.

In conclusion, what is it for?

First, it helps to understand UTF8 encoding.

Then, we can take inspiration from part of this code to count the number of characters.
Example :

s" nb: φ"

\ display :

134495848 6

At a glance, we have 5 characters, whereas eForth indicates a string length of 6
characters!

In an alphanumeric sorting procedure, it may be necessary to transform certain accented
characters into their non-accented equivalent: à → a, é → e, etc.

I leave you complete freedom to find a practical application.

Page 81

Figure 15: table of Greek and Coptic characters

Detailed content of eForth Linux vocabularies
Eforth Linux provides numerous vocabularies:

 FORTH is the main vocabulary;

 certain vocabularies are used for internal mechanics for eForth Linux, such as
internals , asm…

 many vocabularies allow the management of specific ports or accessories, such as
bluetooth , oled , spi , wifi , wire…

Here you will find the list of all the words defined in these different vocabularies. Some
words are presented with a colored link:

is an ordinary FORTH word;

is definition word;

marks a control structure;

is a deferred execution word;

is a word defined by constant , variable or value ;

marks a vocabulary.

FORTH vocabulary words are displayed in alphabetical order. For other vocabularies, the
words are presented in their display order.

Version v 7.0.7.15

FORTH
- -rot , ; : :noname !

? ?do ?dup . ." .s '

(local) [['] [char] [ELSE] [IF] [THEN]

] { }transfer @ * */ */MOD

/ /mod # #! #> #fs #s

#tib + +! +loop +to < <#

<= <> = > >= >BODY >flags

>flags& >in >link >link& >name >params >R

>size 0< 0<> 0= 1- 1/F 1+

2! 2@ 2* 2/ 2drop 2dup 4*

4/ abort abort" abs accept afliteral aft

again ahead align aligned allocate allot also

AND ansi argc argv ARSHIFT asm assert

at-xy base begin bg BIN binary bl

blank block block-fid block-id buffer bye c,

C! C@ CASE cat catch cd CELL

Page 82

https://eforth.arduino-forth.com/help/index-eforth-linux/word/CELL
https://eforth.arduino-forth.com/help/index-eforth-linux/word/catch
https://eforth.arduino-forth.com/help/index-eforth-linux/word/cat
https://eforth.arduino-forth.com/help/index-eforth-linux/word/CASE
https://eforth.arduino-forth.com/help/index-eforth-linux/word/C@
https://eforth.arduino-forth.com/help/index-eforth-linux/word/C!
https://eforth.arduino-forth.com/help/index-eforth-linux/word/c%2C
https://eforth.arduino-forth.com/help/index-eforth-linux/word/bye
https://eforth.arduino-forth.com/help/index-eforth-linux/word/buffer
https://eforth.arduino-forth.com/help/index-eforth-linux/word/block-id
https://eforth.arduino-forth.com/help/index-eforth-linux/word/block-fid
https://eforth.arduino-forth.com/help/index-eforth-linux/word/block
https://eforth.arduino-forth.com/help/index-eforth-linux/word/blank
https://eforth.arduino-forth.com/help/index-eforth-linux/word/bl
https://eforth.arduino-forth.com/help/index-eforth-linux/word/binary
https://eforth.arduino-forth.com/help/index-eforth-linux/word/BIN
https://eforth.arduino-forth.com/help/index-eforth-linux/word/begin
https://eforth.arduino-forth.com/help/index-eforth-linux/word/base
https://eforth.arduino-forth.com/help/index-eforth-linux/word/at-xy
https://eforth.arduino-forth.com/help/index-eforth-linux/word/assert
https://eforth.arduino-forth.com/help/index-eforth-linux/word/asm
https://eforth.arduino-forth.com/help/index-eforth-linux/word/ARSHIFT
https://eforth.arduino-forth.com/help/index-eforth-linux/word/argc
https://eforth.arduino-forth.com/help/index-eforth-linux/word/ansi
https://eforth.arduino-forth.com/help/index-eforth-linux/word/AND
https://eforth.arduino-forth.com/help/index-eforth-linux/word/also
https://eforth.arduino-forth.com/help/index-eforth-linux/word/allot
https://eforth.arduino-forth.com/help/index-eforth-linux/word/aligned
https://eforth.arduino-forth.com/help/index-eforth-linux/word/align
https://eforth.arduino-forth.com/help/index-eforth-linux/word/again
https://eforth.arduino-forth.com/help/index-eforth-linux/word/aft
https://eforth.arduino-forth.com/help/index-eforth-linux/word/afliteral
https://eforth.arduino-forth.com/help/index-eforth-linux/word/accept
https://eforth.arduino-forth.com/help/index-eforth-linux/word/abs
https://eforth.arduino-forth.com/help/index-eforth-linux/word/abort%22
https://eforth.arduino-forth.com/help/index-eforth-linux/word/abort
https://eforth.arduino-forth.com/help/index-eforth-linux/word/4%2F
https://eforth.arduino-forth.com/help/index-eforth-linux/word/4*
https://eforth.arduino-forth.com/help/index-eforth-linux/word/2dup
https://eforth.arduino-forth.com/help/index-eforth-linux/word/2drop
https://eforth.arduino-forth.com/help/index-eforth-linux/word/2%2F
https://eforth.arduino-forth.com/help/index-eforth-linux/word/2*
https://eforth.arduino-forth.com/help/index-eforth-linux/word/2@
https://eforth.arduino-forth.com/help/index-eforth-linux/word/2!
https://eforth.arduino-forth.com/help/index-eforth-linux/word/1%2B
https://eforth.arduino-forth.com/help/index-eforth-linux/word/1%2FF
https://eforth.arduino-forth.com/help/index-eforth-linux/word/1-
https://eforth.arduino-forth.com/help/index-eforth-linux/word/0%3D
https://eforth.arduino-forth.com/help/index-eforth-linux/word/0%3C%3E
https://eforth.arduino-forth.com/help/index-eforth-linux/word/0%3C
https://eforth.arduino-forth.com/help/index-eforth-linux/word/%3ER
https://eforth.arduino-forth.com/help/index-eforth-linux/word/%3Ename
https://eforth.arduino-forth.com/help/index-eforth-linux/word/%3Elink%26
https://eforth.arduino-forth.com/help/index-eforth-linux/word/%3Elink
https://eforth.arduino-forth.com/help/index-eforth-linux/word/%3Ein
https://eforth.arduino-forth.com/help/index-eforth-linux/word/%3Eflags
https://eforth.arduino-forth.com/help/index-eforth-linux/word/%3EBODY
https://eforth.arduino-forth.com/help/index-eforth-linux/word/%3E%3D
https://eforth.arduino-forth.com/help/index-eforth-linux/word/%3E
https://eforth.arduino-forth.com/help/index-eforth-linux/word/%3D
https://eforth.arduino-forth.com/help/index-eforth-linux/word/%3C%3E
https://eforth.arduino-forth.com/help/index-eforth-linux/word/%3C%3D
https://eforth.arduino-forth.com/help/index-eforth-linux/word/%3C%23
https://eforth.arduino-forth.com/help/index-eforth-linux/word/%3C
https://eforth.arduino-forth.com/help/index-eforth-linux/word/%2Bto
https://eforth.arduino-forth.com/help/index-eforth-linux/word/%2Bloop
https://eforth.arduino-forth.com/help/index-eforth-linux/word/%2B!
https://eforth.arduino-forth.com/help/index-eforth-linux/word/%2B
https://eforth.arduino-forth.com/help/index-eforth-linux/word/%23tib
https://eforth.arduino-forth.com/help/index-eforth-linux/word/%23s
https://eforth.arduino-forth.com/help/index-eforth-linux/word/%23fs
https://eforth.arduino-forth.com/help/index-eforth-linux/word/%23%3E
https://eforth.arduino-forth.com/help/index-eforth-linux/word/%23!
https://eforth.arduino-forth.com/help/index-eforth-linux/word/%23
https://eforth.arduino-forth.com/help/index-eforth-linux/word/%2Fmod
https://eforth.arduino-forth.com/help/index-eforth-linux/word/%2F
https://eforth.arduino-forth.com/help/index-eforth-linux/word/*%2FMOD
https://eforth.arduino-forth.com/help/index-eforth-linux/word/*%2F
https://eforth.arduino-forth.com/help/index-eforth-linux/word/*
https://eforth.arduino-forth.com/help/index-eforth-linux/word/@
https://eforth.arduino-forth.com/help/index-eforth-linux/word/%7B
https://eforth.arduino-forth.com/help/index-eforth-linux/word/%5D
https://eforth.arduino-forth.com/help/index-eforth-linux/word/%5BTHEN%5D
https://eforth.arduino-forth.com/help/index-eforth-linux/word/%5BIF%5D
https://eforth.arduino-forth.com/help/index-eforth-linux/word/%5BELSE%5D
https://eforth.arduino-forth.com/help/index-eforth-linux/word/%5Bchar%5D
https://eforth.arduino-forth.com/help/index-eforth-linux/word/%5B'%5D
https://eforth.arduino-forth.com/help/index-eforth-linux/word/%5B
https://eforth.arduino-forth.com/help/index-eforth-linux/word/(local)
https://eforth.arduino-forth.com/help/index-eforth-linux/word/'
https://eforth.arduino-forth.com/help/index-eforth-linux/word/.s
https://eforth.arduino-forth.com/help/index-eforth-linux/word/.%22
https://eforth.arduino-forth.com/help/index-eforth-linux/word/
https://eforth.arduino-forth.com/help/index-eforth-linux/word/%3Fdup
https://eforth.arduino-forth.com/help/index-eforth-linux/word/%3Fdo
https://eforth.arduino-forth.com/help/index-eforth-linux/word/%3F
https://eforth.arduino-forth.com/help/index-eforth-linux/word/!
https://eforth.arduino-forth.com/help/index-eforth-linux/word/%3Anoname
https://eforth.arduino-forth.com/help/index-eforth-linux/word/%3A
https://eforth.arduino-forth.com/help/index-eforth-linux/word/%3B
https://eforth.arduino-forth.com/help/index-eforth-linux/word/%2C
https://eforth.arduino-forth.com/help/index-eforth-linux/word/-rot
https://eforth.arduino-forth.com/help/index-eforth-linux/word/-

cell/ cell+ cells char CLOSE-DIR CLOSE-FILE cmove

cmove> CONSTANT context copy cp cr CREATE

CREATE-FILE current decimal default-key default-type default-use

defer DEFINED? definitions DELETE-FILE depth DLSYM do

DOES> DROP dump dump-file DUP echo editor

else emit empty-buffers ENDCASE ENDOF erase

evaluate EXECUTE EXIT extract F- f. f.s

F* F** F/ F+ F< F<= F<>

F= F> F>= F>S F0< F0= FABS

FATAN2 fconstant FCOS fdepth FDROP FDUP FEXP

fg file-exists? FILE-POSITION FILE-SIZE fill

FIND fliteral FLN FLOOR flush FLUSH-FILE FMAX

FMIN FNEGATE FNIP for forget form FORTH

forth-builtins FOVER FP! FP@ fp0 free

FROT FSIN FSINCOS FSQRT FSWAP fvariable graphics

handler here hex hld hold httpd I

if IMMEDIATE include included included? internals invert

is J K key key? L! latestxt

leave list literal load loop ls LSHIFT

max min mkdir mod ms ms-ticks mv

n. needs negate nest-depth next nip nl

NON-BLOCK normal octal OF ok only open-blocks

OPEN-DIR OPEN-FILE OR order OVER pad page

PARSE pause PI posix postpone precision previous

prompt pwd quit r" R@ R/O R/W

R> r| r~ rdrop READ-DIR READ-FILE recurse

refill remaining remember RENAME-FILE repeat REPOSITION-FILE

required reset resize RESIZE-FILE restore revive rm

rmdir rot RP! RP@ rp0 RSHIFT s"

S>F s>z save save-buffers scr sealed

see set-precision set-title sf, SF! SF@

SFLOAT SFLOAT+ SFLOATS sign SL@ sockets SP!

SP@ sp0 space spaces start-task startswith? startup:

state str str= streams structures SW@ SWAP

task tasks telnetd terminate termios then throw

thru tib to touch transfer transfer{ type

u. U/MOD UL@ UNLOOP until update use

used UW@ value VARIABLE visual vlist vocabulary

W! W/O web-interface while words WRITE-FILE

x11 XOR z" z>s

ansi
terminal-restore terminal-save show hide scroll-up scroll-down clear-to-eol

bel esc

asm
end-code code, code4, code3, code2, code1, callot chere reserve code-at

code-start

Page 83

https://eforth.arduino-forth.com/help/index-eforth-linux/word/code-start
https://eforth.arduino-forth.com/help/index-eforth-linux/word/code-at
https://eforth.arduino-forth.com/help/index-eforth-linux/word/chere
https://eforth.arduino-forth.com/help/index-eforth-linux/word/callot
https://eforth.arduino-forth.com/help/index-eforth-linux/word/end-code
https://eforth.arduino-forth.com/help/index-eforth-linux/word/esc
https://eforth.arduino-forth.com/help/index-eforth-linux/word/bel
https://eforth.arduino-forth.com/help/index-eforth-linux/word/z%3Es
https://eforth.arduino-forth.com/help/index-eforth-linux/word/z%22
https://eforth.arduino-forth.com/help/index-eforth-linux/word/XOR
https://eforth.arduino-forth.com/help/index-eforth-linux/word/x11
https://eforth.arduino-forth.com/help/index-eforth-linux/word/WRITE-FILE
https://eforth.arduino-forth.com/help/index-eforth-linux/word/words
https://eforth.arduino-forth.com/help/index-eforth-linux/word/while
https://eforth.arduino-forth.com/help/index-eforth-linux/word/web-interface
https://eforth.arduino-forth.com/help/index-eforth-linux/word/W%2FO
https://eforth.arduino-forth.com/help/index-eforth-linux/word/vocabulary
https://eforth.arduino-forth.com/help/index-eforth-linux/word/vlist
https://eforth.arduino-forth.com/help/index-eforth-linux/word/VARIABLE
https://eforth.arduino-forth.com/help/index-eforth-linux/word/value
https://eforth.arduino-forth.com/help/index-eforth-linux/word/UW@
https://eforth.arduino-forth.com/help/index-eforth-linux/word/used
https://eforth.arduino-forth.com/help/index-eforth-linux/word/use
https://eforth.arduino-forth.com/help/index-eforth-linux/word/update
https://eforth.arduino-forth.com/help/index-eforth-linux/word/until
https://eforth.arduino-forth.com/help/index-eforth-linux/word/UNLOOP
https://eforth.arduino-forth.com/help/index-eforth-linux/word/UL@
https://eforth.arduino-forth.com/help/index-eforth-linux/word/U%2FMOD
https://eforth.arduino-forth.com/help/index-eforth-linux/word/u.
https://eforth.arduino-forth.com/help/index-eforth-linux/word/type
https://eforth.arduino-forth.com/help/index-eforth-linux/word/touch
https://eforth.arduino-forth.com/help/index-eforth-linux/word/to
https://eforth.arduino-forth.com/help/index-eforth-linux/word/tib
https://eforth.arduino-forth.com/help/index-eforth-linux/word/thru
https://eforth.arduino-forth.com/help/index-eforth-linux/word/throw
https://eforth.arduino-forth.com/help/index-eforth-linux/word/then
https://eforth.arduino-forth.com/help/index-eforth-linux/word/termios
https://eforth.arduino-forth.com/help/index-eforth-linux/word/telnetd
https://eforth.arduino-forth.com/help/index-eforth-linux/word/tasks
https://eforth.arduino-forth.com/help/index-eforth-linux/word/task
https://eforth.arduino-forth.com/help/index-eforth-linux/word/SWAP
https://eforth.arduino-forth.com/help/index-eforth-linux/word/structures
https://eforth.arduino-forth.com/help/index-eforth-linux/word/streams
https://eforth.arduino-forth.com/help/index-eforth-linux/word/str%3D
https://eforth.arduino-forth.com/help/index-eforth-linux/word/str
https://eforth.arduino-forth.com/help/index-eforth-linux/word/state
https://eforth.arduino-forth.com/help/index-eforth-linux/word/startup%3A
https://eforth.arduino-forth.com/help/index-eforth-linux/word/start-task
https://eforth.arduino-forth.com/help/index-eforth-linux/word/spaces
https://eforth.arduino-forth.com/help/index-eforth-linux/word/space
https://eforth.arduino-forth.com/help/index-eforth-linux/word/sp0
https://eforth.arduino-forth.com/help/index-eforth-linux/word/SP@
https://eforth.arduino-forth.com/help/index-eforth-linux/word/sockets
https://eforth.arduino-forth.com/help/index-eforth-linux/word/SFLOATS
https://eforth.arduino-forth.com/help/index-eforth-linux/word/SFLOAT%2B
https://eforth.arduino-forth.com/help/index-eforth-linux/word/SFLOAT
https://eforth.arduino-forth.com/help/index-eforth-linux/word/SF@
https://eforth.arduino-forth.com/help/index-eforth-linux/word/SF!
https://eforth.arduino-forth.com/help/index-eforth-linux/word/sf%2C
https://eforth.arduino-forth.com/help/index-eforth-linux/word/set-precision
https://eforth.arduino-forth.com/help/index-eforth-linux/word/see
https://eforth.arduino-forth.com/help/index-eforth-linux/word/scr
https://eforth.arduino-forth.com/help/index-eforth-linux/word/save-buffers
https://eforth.arduino-forth.com/help/index-eforth-linux/word/save
https://eforth.arduino-forth.com/help/index-eforth-linux/word/s%3Ez
https://eforth.arduino-forth.com/help/index-eforth-linux/word/S%3EF
https://eforth.arduino-forth.com/help/index-eforth-linux/word/s%22
https://eforth.arduino-forth.com/help/index-eforth-linux/word/RSHIFT
https://eforth.arduino-forth.com/help/index-eforth-linux/word/rp0
https://eforth.arduino-forth.com/help/index-eforth-linux/word/rot
https://eforth.arduino-forth.com/help/index-eforth-linux/word/rm
https://eforth.arduino-forth.com/help/index-eforth-linux/word/revive
https://eforth.arduino-forth.com/help/index-eforth-linux/word/restore
https://eforth.arduino-forth.com/help/index-eforth-linux/word/RESIZE-FILE
https://eforth.arduino-forth.com/help/index-eforth-linux/word/reset
https://eforth.arduino-forth.com/help/index-eforth-linux/word/required
https://eforth.arduino-forth.com/help/index-eforth-linux/word/REPOSITION-FILE
https://eforth.arduino-forth.com/help/index-eforth-linux/word/repeat
https://eforth.arduino-forth.com/help/index-eforth-linux/word/remember
https://eforth.arduino-forth.com/help/index-eforth-linux/word/remaining
https://eforth.arduino-forth.com/help/index-eforth-linux/word/recurse
https://eforth.arduino-forth.com/help/index-eforth-linux/word/READ-FILE
https://eforth.arduino-forth.com/help/index-eforth-linux/word/rdrop
https://eforth.arduino-forth.com/help/index-eforth-linux/word/r%7C
https://eforth.arduino-forth.com/help/index-eforth-linux/word/R%3E
https://eforth.arduino-forth.com/help/index-eforth-linux/word/R%2FW
https://eforth.arduino-forth.com/help/index-eforth-linux/word/R%2FO
https://eforth.arduino-forth.com/help/index-eforth-linux/word/R@
https://eforth.arduino-forth.com/help/index-eforth-linux/word/r%22
https://eforth.arduino-forth.com/help/index-eforth-linux/word/pwd
https://eforth.arduino-forth.com/help/index-eforth-linux/word/prompt
https://eforth.arduino-forth.com/help/index-eforth-linux/word/precision
https://eforth.arduino-forth.com/help/index-eforth-linux/word/posix
https://eforth.arduino-forth.com/help/index-eforth-linux/word/PI
https://eforth.arduino-forth.com/help/index-eforth-linux/word/pause
https://eforth.arduino-forth.com/help/index-eforth-linux/word/PARSE
https://eforth.arduino-forth.com/help/index-eforth-linux/word/page
https://eforth.arduino-forth.com/help/index-eforth-linux/word/OVER
https://eforth.arduino-forth.com/help/index-eforth-linux/word/order
https://eforth.arduino-forth.com/help/index-eforth-linux/word/OR
https://eforth.arduino-forth.com/help/index-eforth-linux/word/OPEN-FILE
https://eforth.arduino-forth.com/help/index-eforth-linux/word/open-blocks
https://eforth.arduino-forth.com/help/index-eforth-linux/word/only
https://eforth.arduino-forth.com/help/index-eforth-linux/word/ok
https://eforth.arduino-forth.com/help/index-eforth-linux/word/OF
https://eforth.arduino-forth.com/help/index-eforth-linux/word/octal
https://eforth.arduino-forth.com/help/index-eforth-linux/word/normal
https://eforth.arduino-forth.com/help/index-eforth-linux/word/nl
https://eforth.arduino-forth.com/help/index-eforth-linux/word/nip
https://eforth.arduino-forth.com/help/index-eforth-linux/word/next
https://eforth.arduino-forth.com/help/index-eforth-linux/word/negate
https://eforth.arduino-forth.com/help/index-eforth-linux/word/n.
https://eforth.arduino-forth.com/help/index-eforth-linux/word/mv
https://eforth.arduino-forth.com/help/index-eforth-linux/word/ms-ticks
https://eforth.arduino-forth.com/help/index-eforth-linux/word/ms
https://eforth.arduino-forth.com/help/index-eforth-linux/word/mod
https://eforth.arduino-forth.com/help/index-eforth-linux/word/min
https://eforth.arduino-forth.com/help/index-eforth-linux/word/max
https://eforth.arduino-forth.com/help/index-eforth-linux/word/LSHIFT
https://eforth.arduino-forth.com/help/index-eforth-linux/word/ls
https://eforth.arduino-forth.com/help/index-eforth-linux/word/loop
https://eforth.arduino-forth.com/help/index-eforth-linux/word/load
https://eforth.arduino-forth.com/help/index-eforth-linux/word/literal
https://eforth.arduino-forth.com/help/index-eforth-linux/word/list
https://eforth.arduino-forth.com/help/index-eforth-linux/word/leave
https://eforth.arduino-forth.com/help/index-eforth-linux/word/latestxt
https://eforth.arduino-forth.com/help/index-eforth-linux/word/L!
https://eforth.arduino-forth.com/help/index-eforth-linux/word/key%3F
https://eforth.arduino-forth.com/help/index-eforth-linux/word/key
https://eforth.arduino-forth.com/help/index-eforth-linux/word/K
https://eforth.arduino-forth.com/help/index-eforth-linux/word/J
https://eforth.arduino-forth.com/help/index-eforth-linux/word/is
https://eforth.arduino-forth.com/help/index-eforth-linux/word/invert
https://eforth.arduino-forth.com/help/index-eforth-linux/word/internals
https://eforth.arduino-forth.com/help/index-eforth-linux/word/included%3F
https://eforth.arduino-forth.com/help/index-eforth-linux/word/included
https://eforth.arduino-forth.com/help/index-eforth-linux/word/include
https://eforth.arduino-forth.com/help/index-eforth-linux/word/IMMEDIATE
https://eforth.arduino-forth.com/help/index-eforth-linux/word/if
https://eforth.arduino-forth.com/help/index-eforth-linux/word/I
https://eforth.arduino-forth.com/help/index-eforth-linux/word/httpd
https://eforth.arduino-forth.com/help/index-eforth-linux/word/hold
https://eforth.arduino-forth.com/help/index-eforth-linux/word/hld
https://eforth.arduino-forth.com/help/index-eforth-linux/word/hex
https://eforth.arduino-forth.com/help/index-eforth-linux/word/here
https://eforth.arduino-forth.com/help/index-eforth-linux/word/handler
https://eforth.arduino-forth.com/help/index-eforth-linux/word/graphics
https://eforth.arduino-forth.com/help/index-eforth-linux/word/fvariable
https://eforth.arduino-forth.com/help/index-eforth-linux/word/FSWAP
https://eforth.arduino-forth.com/help/index-eforth-linux/word/FSQRT
https://eforth.arduino-forth.com/help/index-eforth-linux/word/FSINCOS
https://eforth.arduino-forth.com/help/index-eforth-linux/word/FSIN
https://eforth.arduino-forth.com/help/index-eforth-linux/word/fp0
https://eforth.arduino-forth.com/help/index-eforth-linux/word/FP@
https://eforth.arduino-forth.com/help/index-eforth-linux/word/FOVER
https://eforth.arduino-forth.com/help/index-eforth-linux/word/forth-builtins
https://eforth.arduino-forth.com/help/index-eforth-linux/word/FORTH
https://eforth.arduino-forth.com/help/index-eforth-linux/word/forget
https://eforth.arduino-forth.com/help/index-eforth-linux/word/for
https://eforth.arduino-forth.com/help/index-eforth-linux/word/FNIP
https://eforth.arduino-forth.com/help/index-eforth-linux/word/FNEGATE
https://eforth.arduino-forth.com/help/index-eforth-linux/word/FMIN
https://eforth.arduino-forth.com/help/index-eforth-linux/word/FMAX
https://eforth.arduino-forth.com/help/index-eforth-linux/word/FLUSH-FILE
https://eforth.arduino-forth.com/help/index-eforth-linux/word/flush
https://eforth.arduino-forth.com/help/index-eforth-linux/word/FLOOR
https://eforth.arduino-forth.com/help/index-eforth-linux/word/FLN
https://eforth.arduino-forth.com/help/index-eforth-linux/word/fliteral
https://eforth.arduino-forth.com/help/index-eforth-linux/word/FIND
https://eforth.arduino-forth.com/help/index-eforth-linux/word/fill
https://eforth.arduino-forth.com/help/index-eforth-linux/word/FILE-SIZE
https://eforth.arduino-forth.com/help/index-eforth-linux/word/FILE-POSITION
https://eforth.arduino-forth.com/help/index-eforth-linux/word/file-exists%3F
https://eforth.arduino-forth.com/help/index-eforth-linux/word/FEXP
https://eforth.arduino-forth.com/help/index-eforth-linux/word/FDUP
https://eforth.arduino-forth.com/help/index-eforth-linux/word/FDROP
https://eforth.arduino-forth.com/help/index-eforth-linux/word/fdepth
https://eforth.arduino-forth.com/help/index-eforth-linux/word/FCOS
https://eforth.arduino-forth.com/help/index-eforth-linux/word/fconstant
https://eforth.arduino-forth.com/help/index-eforth-linux/word/FATAN2
https://eforth.arduino-forth.com/help/index-eforth-linux/word/FABS
https://eforth.arduino-forth.com/help/index-eforth-linux/word/F0%3D
https://eforth.arduino-forth.com/help/index-eforth-linux/word/F0%3C
https://eforth.arduino-forth.com/help/index-eforth-linux/word/F%3ES
https://eforth.arduino-forth.com/help/index-eforth-linux/word/F%3E%3D
https://eforth.arduino-forth.com/help/index-eforth-linux/word/F%3E
https://eforth.arduino-forth.com/help/index-eforth-linux/word/F%3D
https://eforth.arduino-forth.com/help/index-eforth-linux/word/F%3C%3E
https://eforth.arduino-forth.com/help/index-eforth-linux/word/F%3C%3D
https://eforth.arduino-forth.com/help/index-eforth-linux/word/F%3C
https://eforth.arduino-forth.com/help/index-eforth-linux/word/F%2B
https://eforth.arduino-forth.com/help/index-eforth-linux/word/F%2F
https://eforth.arduino-forth.com/help/index-eforth-linux/word/F**
https://eforth.arduino-forth.com/help/index-eforth-linux/word/F*
https://eforth.arduino-forth.com/help/index-eforth-linux/word/f.s
https://eforth.arduino-forth.com/help/index-eforth-linux/word/f.
https://eforth.arduino-forth.com/help/index-eforth-linux/word/F-
https://eforth.arduino-forth.com/help/index-eforth-linux/word/extract
https://eforth.arduino-forth.com/help/index-eforth-linux/word/EXIT
https://eforth.arduino-forth.com/help/index-eforth-linux/word/EXECUTE
https://eforth.arduino-forth.com/help/index-eforth-linux/word/evaluate
https://eforth.arduino-forth.com/help/index-eforth-linux/word/erase
https://eforth.arduino-forth.com/help/index-eforth-linux/word/ENDOF
https://eforth.arduino-forth.com/help/index-eforth-linux/word/ENDCASE
https://eforth.arduino-forth.com/help/index-eforth-linux/word/empty-buffers
https://eforth.arduino-forth.com/help/index-eforth-linux/word/emit
https://eforth.arduino-forth.com/help/index-eforth-linux/word/else
https://eforth.arduino-forth.com/help/index-eforth-linux/word/editor
https://eforth.arduino-forth.com/help/index-eforth-linux/word/echo
https://eforth.arduino-forth.com/help/index-eforth-linux/word/DUP
https://eforth.arduino-forth.com/help/index-eforth-linux/word/dump-file
https://eforth.arduino-forth.com/help/index-eforth-linux/word/dump
https://eforth.arduino-forth.com/help/index-eforth-linux/word/DROP
https://eforth.arduino-forth.com/help/index-eforth-linux/word/DOES%3E
https://eforth.arduino-forth.com/help/index-eforth-linux/word/do
https://eforth.arduino-forth.com/help/index-eforth-linux/word/depth
https://eforth.arduino-forth.com/help/index-eforth-linux/word/definitions
https://eforth.arduino-forth.com/help/index-eforth-linux/word/DEFINED%3F
https://eforth.arduino-forth.com/help/index-eforth-linux/word/defer
https://eforth.arduino-forth.com/help/index-eforth-linux/word/default-use
https://eforth.arduino-forth.com/help/index-eforth-linux/word/default-type
https://eforth.arduino-forth.com/help/index-eforth-linux/word/default-key
https://eforth.arduino-forth.com/help/index-eforth-linux/word/decimal
https://eforth.arduino-forth.com/help/index-eforth-linux/word/current
https://eforth.arduino-forth.com/help/index-eforth-linux/word/CREATE-FILE
https://eforth.arduino-forth.com/help/index-eforth-linux/word/CREATE
https://eforth.arduino-forth.com/help/index-eforth-linux/word/cr
https://eforth.arduino-forth.com/help/index-eforth-linux/word/cp
https://eforth.arduino-forth.com/help/index-eforth-linux/word/copy
https://eforth.arduino-forth.com/help/index-eforth-linux/word/context
https://eforth.arduino-forth.com/help/index-eforth-linux/word/CONSTANT
https://eforth.arduino-forth.com/help/index-eforth-linux/word/cmove
https://eforth.arduino-forth.com/help/index-eforth-linux/word/CLOSE-FILE
https://eforth.arduino-forth.com/help/index-eforth-linux/word/char
https://eforth.arduino-forth.com/help/index-eforth-linux/word/cells
https://eforth.arduino-forth.com/help/index-eforth-linux/word/cell%2B
https://eforth.arduino-forth.com/help/index-eforth-linux/word/cell%2F

editor
a r d e wipe p n l

graphics
poll wait flip window window heart vertical-flip viewport scale translate

}g g{ screen>g box color pressed? pixel height width event last-char last-key

mouse-y mouse-x RIGHT-BUTTON MIDDLE-BUTTON LEFT-BUTTON FINISHED TYPED RELEASED

PRESSED MOTION EXPOSED RESIZED IDLE internals

graphics/internals

update-event pending-key? update-key update-mouse image-resize EVENT-MASK

keybuffer-used keybuffer keybuffer-size xevent xevent-type image gc window-handle

root-window white black screen-depth xvisual colormap screen display raw-heart

heart-ratio heart-initialize cmax! cmin! heart-end heart-start heart-size

heart-steps heart-f raw-box g> >g gp gstack hline ty tx sy sx key-state!

key-state key-count backbuffer

httpd
notfound-response bad-response ok-response response send path method hasHeader

handleClient read-headers completed? body content-length header crnl= eat

skipover skipto in@<> end< goal# goal strcase= upper server client-cr client-emit

client-read client-type client-len client httpd-port clientfd sockfd body-read

body-1st-read body-chunk body-chunk-size chunk-filled chunk chunk-size

max-connections

internals
errno CALLCODE CALL0 CALL1 CALL2 CALL3 CALL4 CALL5 CALL6 CALL7 CALL8 CALL9

CALL10 CALL11 CALL12 CALL13 CALL14 CALL15 DOFLIT S>FLOAT? fill32 'heap

'context 'latestxt 'notfound 'heap-start 'heap-size 'stack-cells 'boot

'boot-size 'tib 'argc 'argv 'runner 'throw-handler NOP BRANCH 0BRANCH DONEXT

DOLIT DOSET DOCOL DOCON DOVAR DOCREATE DODOES ALITERAL LONG-SIZE S>NUMBER?

'SYS YIELD EVALUATE1 'builtins internals-builtins autoexec boot-set-title

e' @line grow-blocks use?! common-default-use block-data block-dirty clobber

clobber-line include+ path-join included-files raw-included include-file

sourcedirname sourcefilename! sourcefilename sourcefilename# sourcefilename&

starts../ starts./ dirname ends/ default-remember-filename remember-filename

restore-name save-name forth-wordlist setup-saving-base 'cold park-forth

park-heap saving-base crtype cremit cases (+to) (to) --? }? ?room scope-create

do-local scope-clear scope-exit local-op scope-depth local+! local! local@

<>locals locals-here locals-area locals-gap locals-capacity ?ins. ins.

vins. onlines line-pos line-width size-all size-vocabulary vocs. voc. voclist

voclist-from see-all >vocnext see-vocabulary nonvoc? see-xt ?see-flags

see-loop see-one indent+! icr see. indent mem= ARGS_MARK -TAB +TAB NONAMED

BUILTIN_FORK SMUDGE IMMEDIATE_MARK dump-line ca@ cell-shift cell-base cell-mask

#f+s internalized BUILTIN_MARK zplace $place free. boot-prompt raw-ok [SKIP]'

[SKIP] ?stack sp-limit input-limit tib-setup raw.s $@ digit parse-quote

leaving, leaving)leaving leaving(value-bind evaluate&fill evaluate-buffer

Page 84

https://eforth.arduino-forth.com/help/index-eforth-linux/word/digit
https://eforth.arduino-forth.com/help/index-eforth-linux/word/input-limit
https://eforth.arduino-forth.com/help/index-eforth-linux/word/%5BSKIP%5D
https://eforth.arduino-forth.com/help/index-eforth-linux/word/%5BSKIP%5D'
https://eforth.arduino-forth.com/help/index-eforth-linux/word/internalized
https://eforth.arduino-forth.com/help/index-eforth-linux/word/%23f%2Bs
https://eforth.arduino-forth.com/help/index-eforth-linux/word/IMMEDIATE_MARK
https://eforth.arduino-forth.com/help/index-eforth-linux/word/SMUDGE
https://eforth.arduino-forth.com/help/index-eforth-linux/word/see.
https://eforth.arduino-forth.com/help/index-eforth-linux/word/see-all
https://eforth.arduino-forth.com/help/index-eforth-linux/word/voclist
https://eforth.arduino-forth.com/help/index-eforth-linux/word/voc.
https://eforth.arduino-forth.com/help/index-eforth-linux/word/vocs.
https://eforth.arduino-forth.com/help/index-eforth-linux/word/line-width
https://eforth.arduino-forth.com/help/index-eforth-linux/word/line-pos
https://eforth.arduino-forth.com/help/index-eforth-linux/word/locals-capacity
https://eforth.arduino-forth.com/help/index-eforth-linux/word/(to)
https://eforth.arduino-forth.com/help/index-eforth-linux/word/(%2Bto)
https://eforth.arduino-forth.com/help/index-eforth-linux/word/'cold
https://eforth.arduino-forth.com/help/index-eforth-linux/word/save-name
https://eforth.arduino-forth.com/help/index-eforth-linux/word/remember-filename
https://eforth.arduino-forth.com/help/index-eforth-linux/word/block-dirty
https://eforth.arduino-forth.com/help/index-eforth-linux/word/block-data
https://eforth.arduino-forth.com/help/index-eforth-linux/word/common-default-use
https://eforth.arduino-forth.com/help/index-eforth-linux/word/grow-blocks
https://eforth.arduino-forth.com/help/index-eforth-linux/word/'SYS
https://eforth.arduino-forth.com/help/index-eforth-linux/word/S%3ENUMBER%3F
https://eforth.arduino-forth.com/help/index-eforth-linux/word/LONG-SIZE
https://eforth.arduino-forth.com/help/index-eforth-linux/word/DOLIT
https://eforth.arduino-forth.com/help/index-eforth-linux/word/DONEXT
https://eforth.arduino-forth.com/help/index-eforth-linux/word/BRANCH
https://eforth.arduino-forth.com/help/index-eforth-linux/word/'tib
https://eforth.arduino-forth.com/help/index-eforth-linux/word/'notfound
https://eforth.arduino-forth.com/help/index-eforth-linux/word/DOFLIT
https://eforth.arduino-forth.com/help/index-eforth-linux/word/chunk-size
https://eforth.arduino-forth.com/help/index-eforth-linux/word/backbuffer
https://eforth.arduino-forth.com/help/index-eforth-linux/word/key-count
https://eforth.arduino-forth.com/help/index-eforth-linux/word/gstack
https://eforth.arduino-forth.com/help/index-eforth-linux/word/internals
https://eforth.arduino-forth.com/help/index-eforth-linux/word/IDLE
https://eforth.arduino-forth.com/help/index-eforth-linux/word/RESIZED
https://eforth.arduino-forth.com/help/index-eforth-linux/word/EXPOSED
https://eforth.arduino-forth.com/help/index-eforth-linux/word/MOTION
https://eforth.arduino-forth.com/help/index-eforth-linux/word/PRESSED
https://eforth.arduino-forth.com/help/index-eforth-linux/word/RELEASED
https://eforth.arduino-forth.com/help/index-eforth-linux/word/TYPED
https://eforth.arduino-forth.com/help/index-eforth-linux/word/FINISHED
https://eforth.arduino-forth.com/help/index-eforth-linux/word/LEFT-BUTTON
https://eforth.arduino-forth.com/help/index-eforth-linux/word/MIDDLE-BUTTON
https://eforth.arduino-forth.com/help/index-eforth-linux/word/RIGHT-BUTTON
https://eforth.arduino-forth.com/help/index-eforth-linux/word/mouse-x
https://eforth.arduino-forth.com/help/index-eforth-linux/word/mouse-y
https://eforth.arduino-forth.com/help/index-eforth-linux/word/last-key
https://eforth.arduino-forth.com/help/index-eforth-linux/word/last-char
https://eforth.arduino-forth.com/help/index-eforth-linux/word/event
https://eforth.arduino-forth.com/help/index-eforth-linux/word/width
https://eforth.arduino-forth.com/help/index-eforth-linux/word/height
https://eforth.arduino-forth.com/help/index-eforth-linux/word/pixel
https://eforth.arduino-forth.com/help/index-eforth-linux/word/color
https://eforth.arduino-forth.com/help/index-eforth-linux/word/poll
https://eforth.arduino-forth.com/help/index-eforth-linux/word/wipe

arrow ?arrow. ?echo input-buffer immediate? eat-till-cr wascr *emit *key

notfound last-vocabulary voc-stack-end xt-transfer xt-hide xt-find& scope

posix
FNDELAY F_SETFL fcntl CLOCK_BOOTTIME_ALARM CLOCK_REALTIME_ALARM CLOCK_BOOTTIME

CLOCK_MONOTONIC_COARSE CLOCK_REALTIME_COARSE CLOCK_MONOTONIC_RAW
CLOCK_THREAD_CPUTIME_ID

CLOCK_PROCESS_CPUTIME_ID CLOCK_MONOTONIC CLOCK_REALTIME timespec clock_gettime

0777 SIGPIPE SIGBUS SIGKILL SIGINT SIGHUP SIG_IGN SIG_DFL EPIPE EAGAIN

d0=ior d0<ior 0=ior 0<ior stdin-key stdout-write O_NONBLOCK O_APPEND O_TRUNC

O_CREAT O_RDWR O_WRONLY O_RDONLY MAP_ANONYMOUS MAP_FIXED MAP_PRIVATE PROT_EXEC

PROT_WRITE PROT_READ PROT_NONE SEEK_END SEEK_CUR SEEK_SET stderr stdout

stdin errno .d_name .d_type readdir closedir opendir getwd rmdir mkdir

chdir signal usleep realloc sysfree malloc rename unlink mprotect munmap

mmap waitpid wait fork sysexit fsync ftruncate lseek write read close creat

open sign-extend shared-library sysfunc sofunc calls dlopen 'dlopen RTLD_NOW

RTLD_LAZY

sockets
sockaccept ip. ip# ->h_addr ->addr! ->addr@ ->port! ->port@ sockaddr l,

s, bs, SO_REUSEADDR SOL_SOCKET sizeof(sockaddr_in) AF_INET SOCK_RAW SOCK_DGRAM

SOCK_STREAM gethostbyname recvmsg recvfrom recv sendmsg sendto send setsockopt

poll sockaccept connect listen bind socket

tasks
main-task .tasks task-list

telnetd
server broker-connection wait-for-connection connection telnet-key

telnet-type telnet-emit broker client-len client telnet-port clientfd

sockfd

termios
termios-key termios-key? pending form winsize sizeof(winsize) TIOCGWINSZ

normal-mode raw-mode termios! termios@ VMIN VTIME TCSAFLUSH _ECHO ICANON

.c_cc[] .c_lflag new-termios old-termios sizeof(termios) delay-mode nodelay-mode

ioctl tcsetattr tcgetattr

web-interface
server webserver-task do-serve handle1 serve-key serve-type handle-input

handle-index out-string output-stream input-stream out-size webserver index-html

index-html#

Page 85

https://eforth.arduino-forth.com/help/index-eforth-linux/word/task-list
https://eforth.arduino-forth.com/help/index-eforth-linux/word/.tasks
https://eforth.arduino-forth.com/help/index-eforth-linux/word/main-task
https://eforth.arduino-forth.com/help/index-eforth-linux/word/bind
https://eforth.arduino-forth.com/help/index-eforth-linux/word/poll
https://eforth.arduino-forth.com/help/index-eforth-linux/word/SOCK_STREAM
https://eforth.arduino-forth.com/help/index-eforth-linux/word/SOCK_DGRAM
https://eforth.arduino-forth.com/help/index-eforth-linux/word/SOCK_RAW
https://eforth.arduino-forth.com/help/index-eforth-linux/word/AF_INET
https://eforth.arduino-forth.com/help/index-eforth-linux/word/sizeof(sockaddr_in)
https://eforth.arduino-forth.com/help/index-eforth-linux/word/SOL_SOCKET
https://eforth.arduino-forth.com/help/index-eforth-linux/word/SO_REUSEADDR
https://eforth.arduino-forth.com/help/index-eforth-linux/word/RTLD_LAZY
https://eforth.arduino-forth.com/help/index-eforth-linux/word/RTLD_NOW
https://eforth.arduino-forth.com/help/index-eforth-linux/word/sysfunc
https://eforth.arduino-forth.com/help/index-eforth-linux/word/shared-library
https://eforth.arduino-forth.com/help/index-eforth-linux/word/open
https://eforth.arduino-forth.com/help/index-eforth-linux/word/PROT_EXEC
https://eforth.arduino-forth.com/help/index-eforth-linux/word/MAP_PRIVATE
https://eforth.arduino-forth.com/help/index-eforth-linux/word/MAP_FIXED
https://eforth.arduino-forth.com/help/index-eforth-linux/word/O_RDONLY
https://eforth.arduino-forth.com/help/index-eforth-linux/word/O_WRONLY
https://eforth.arduino-forth.com/help/index-eforth-linux/word/O_RDWR
https://eforth.arduino-forth.com/help/index-eforth-linux/word/O_CREAT
https://eforth.arduino-forth.com/help/index-eforth-linux/word/O_TRUNC
https://eforth.arduino-forth.com/help/index-eforth-linux/word/O_APPEND
https://eforth.arduino-forth.com/help/index-eforth-linux/word/O_NONBLOCK
https://eforth.arduino-forth.com/help/index-eforth-linux/word/EAGAIN
https://eforth.arduino-forth.com/help/index-eforth-linux/word/EPIPE
https://eforth.arduino-forth.com/help/index-eforth-linux/word/SIG_DFL
https://eforth.arduino-forth.com/help/index-eforth-linux/word/SIG_IGN
https://eforth.arduino-forth.com/help/index-eforth-linux/word/SIGHUP
https://eforth.arduino-forth.com/help/index-eforth-linux/word/SIGINT
https://eforth.arduino-forth.com/help/index-eforth-linux/word/SIGKILL
https://eforth.arduino-forth.com/help/index-eforth-linux/word/SIGBUS
https://eforth.arduino-forth.com/help/index-eforth-linux/word/SIGPIPE
https://eforth.arduino-forth.com/help/index-eforth-linux/word/CLOCK_REALTIME
https://eforth.arduino-forth.com/help/index-eforth-linux/word/CLOCK_MONOTONIC
https://eforth.arduino-forth.com/help/index-eforth-linux/word/CLOCK_PROCESS_CPUTIME_ID
https://eforth.arduino-forth.com/help/index-eforth-linux/word/CLOCK_THREAD_CPUTIME_ID
https://eforth.arduino-forth.com/help/index-eforth-linux/word/CLOCK_MONOTONIC_RAW
https://eforth.arduino-forth.com/help/index-eforth-linux/word/CLOCK_REALTIME_COARSE
https://eforth.arduino-forth.com/help/index-eforth-linux/word/CLOCK_MONOTONIC_COARSE
https://eforth.arduino-forth.com/help/index-eforth-linux/word/CLOCK_BOOTTIME
https://eforth.arduino-forth.com/help/index-eforth-linux/word/CLOCK_REALTIME_ALARM
https://eforth.arduino-forth.com/help/index-eforth-linux/word/CLOCK_BOOTTIME_ALARM
https://eforth.arduino-forth.com/help/index-eforth-linux/word/F_SETFL
https://eforth.arduino-forth.com/help/index-eforth-linux/word/FNDELAY
https://eforth.arduino-forth.com/help/index-eforth-linux/word/last-vocabulary
https://eforth.arduino-forth.com/help/index-eforth-linux/word/immediate%3F
https://eforth.arduino-forth.com/help/index-eforth-linux/word/input-buffer

x11
GenericEvent MappingNotify ClientMessage ColormapNotify SelectionNotify

SelectionRequest SelectionClear PropertyNotify CirculateRequest CirculateNotify

ResizeRequest GravityNotify ConfigureRequest ConfigureNotify ReparentNotify

MapRequest MapNotify UnmapNotify DestroyNotify CreateNotify VisibilityNotify

NoExpose GraphicsExpose Expose KeymapNotify FocusOut FocusIn LeaveNotify

EnterNotify MotionNotify ButtonRelease ButtonPress KeyRelease KeyPress

xevent# OwnerGrabButtonMask ColormapChangeMask PropertyChangeMask FocusChangeMask

SubstructureRedirectMask SubstructureNotifyMask ResizeRedirectMask
StructureNotifyMask

VisibilityChangeMask ExposureMask KeymapStateMask ButtonMotionMask
Button5MotionMask

Button4MotionMask Button3MotionMask Button2MotionMask Button1MotionMask

PointerMotionHintMask PointerMotionMask LeaveWindowMask EnterWindowMask

ButtonReleaseMask ButtonPressMask KeyReleaseMask KeyPressMask xmask NoEventMask

xexposure xconfigure xmotion xkey xbutton xany bool time win xevent-size

NULL ZPixmap XYPixmap XYBitmap XFillRectangle XSetBackground XSetForeground

XDrawString XSelectInput XPutImage XNextEvent XMapWindow XLookupString

XFlush XDestroyImage XDefaultVisual XDefaultDepth XCreateSimpleWindow XCreateImage

XCreateGC XCheckMaskEvent XRootWindow XDefaultScreen XDefaultColormap
XScreenOfDisplay

XDisplayOfScreen XWhitePixel XBlackPixel XOpenDisplay xlib

Page 86

https://eforth.arduino-forth.com/help/index-eforth-linux/word/xlib
https://eforth.arduino-forth.com/help/index-eforth-linux/word/XOpenDisplay
https://eforth.arduino-forth.com/help/index-eforth-linux/word/XBlackPixel
https://eforth.arduino-forth.com/help/index-eforth-linux/word/XWhitePixel
https://eforth.arduino-forth.com/help/index-eforth-linux/word/XDisplayOfScreen
https://eforth.arduino-forth.com/help/index-eforth-linux/word/XScreenOfDisplay
https://eforth.arduino-forth.com/help/index-eforth-linux/word/XDefaultColormap
https://eforth.arduino-forth.com/help/index-eforth-linux/word/XDefaultScreen
https://eforth.arduino-forth.com/help/index-eforth-linux/word/XRootWindow
https://eforth.arduino-forth.com/help/index-eforth-linux/word/NULL
https://eforth.arduino-forth.com/help/index-eforth-linux/word/xevent-size
https://eforth.arduino-forth.com/help/index-eforth-linux/word/xany
https://eforth.arduino-forth.com/help/index-eforth-linux/word/xbutton
https://eforth.arduino-forth.com/help/index-eforth-linux/word/xkey
https://eforth.arduino-forth.com/help/index-eforth-linux/word/xmotion
https://eforth.arduino-forth.com/help/index-eforth-linux/word/xconfigure
https://eforth.arduino-forth.com/help/index-eforth-linux/word/xexposure
https://eforth.arduino-forth.com/help/index-eforth-linux/word/KeyPressMask
https://eforth.arduino-forth.com/help/index-eforth-linux/word/KeyReleaseMask
https://eforth.arduino-forth.com/help/index-eforth-linux/word/ButtonPressMask
https://eforth.arduino-forth.com/help/index-eforth-linux/word/ButtonReleaseMask
https://eforth.arduino-forth.com/help/index-eforth-linux/word/EnterWindowMask
https://eforth.arduino-forth.com/help/index-eforth-linux/word/LeaveWindowMask
https://eforth.arduino-forth.com/help/index-eforth-linux/word/PointerMotionMask
https://eforth.arduino-forth.com/help/index-eforth-linux/word/PointerMotionHintMask
https://eforth.arduino-forth.com/help/index-eforth-linux/word/Button1MotionMask
https://eforth.arduino-forth.com/help/index-eforth-linux/word/Button2MotionMask
https://eforth.arduino-forth.com/help/index-eforth-linux/word/Button3MotionMask
https://eforth.arduino-forth.com/help/index-eforth-linux/word/Button4MotionMask
https://eforth.arduino-forth.com/help/index-eforth-linux/word/Button5MotionMask
https://eforth.arduino-forth.com/help/index-eforth-linux/word/ButtonMotionMask
https://eforth.arduino-forth.com/help/index-eforth-linux/word/KeymapStateMask
https://eforth.arduino-forth.com/help/index-eforth-linux/word/ExposureMask
https://eforth.arduino-forth.com/help/index-eforth-linux/word/VisibilityChangeMask
https://eforth.arduino-forth.com/help/index-eforth-linux/word/StructureNotifyMask
https://eforth.arduino-forth.com/help/index-eforth-linux/word/ResizeRedirectMask
https://eforth.arduino-forth.com/help/index-eforth-linux/word/SubstructureNotifyMask
https://eforth.arduino-forth.com/help/index-eforth-linux/word/SubstructureRedirectMask
https://eforth.arduino-forth.com/help/index-eforth-linux/word/FocusChangeMask
https://eforth.arduino-forth.com/help/index-eforth-linux/word/PropertyChangeMask
https://eforth.arduino-forth.com/help/index-eforth-linux/word/ColormapChangeMask
https://eforth.arduino-forth.com/help/index-eforth-linux/word/OwnerGrabButtonMask

Lexical index
allot.......................................43
ansi..82
asm..82
assert.....................................37
BASE....................................56
BINARY...............................56
c!...42
c@...42
cat..27
constant.................................42
create...............................43, 69
DECIMAL............................56
defer......................................66
delete file...............................26
DOES>..................................69
dump.....................................35
editor.....................................83
fconstant................................53
files list..................................26
forget.....................................39
FORTH..................................81
FORTH word..........................7

fvariable................................53
graphics.................................83
HEX......................................56
HOLD...................................57
httpd......................................83
include...................................26
internals.................................83
is..66
lshift......................................75
mv...26
posix......................................84
r@..41
r>...41
rdrop......................................41
recurse...................................75
rm..26
S"...60
see...35
SF!...53
SF@......................................53
sockets...................................84
SPACE..................................60

struct......................................50
structures...............................50
tasks.......................................84
telnetd....................................84
termios...................................84
type..17
value......................................43
variable..................................42
web-interface.........................84
x11...85
;...39
:...39
:noname.................................67
.s..

..36
#...57
#>..57
#S..57
<#..57
>r...41

Page 87

	Author
	Introduction
	Translation help

	Why program in FORTH language on eForth Linux?
	Preamble
	Boundaries between language and application
	What is a FORTH word?
	A word is a function?
	FORTH language compared to C language
	What FORTH allows you to do compared to the C language
	But why a stack rather than variables?
	Are you convinced?

	Are there any professional applications written in FORTH?

	Install eForth on Linux
	Prerequisites
	Install eForth Linux on Linux
	Launch eForth Linux

	A real 64-bit FORTH with eForth Linux
	Values on the data stack
	Values in memory
	Word processing depending on data size or type

	Conclusion

	Editing and managing source files for eForth Linux
	Text file editors
	Storage on GitHub
	Edit files for eForth Linux from Windows

	Creation and management of FORTH projects with Netbeans
	Create an eForth project with Netbeans

	Some good practices
	Executing the contents of a file by eForth Linux

	The Linux file system
	Handling files
	Organize and compile your files with eForth Linux
	Organize your files
	Chaining of files

	Conclusion

	Comments and debugging
	Write readable FORTH code
	Source code indentation

	Comments
	Stack comments
	Meaning of stack parameters in comments
	Word Definition Word Comments

	Textual comments
	Comment at the beginning of the source code

	Diagnostic and tuning tools
	The decompiler
	Memory dump
	Data stack monitor

	Perform unit tests
	Creating and using assert(

	Dictionary / Stack / Variables / Constants
	Expand Dictionary
	Dictionary management

	Stacks and reverse Polish notation
	Handling the parameter stack

	The Return Stack and Its Uses
	Memory usage
	Variables
	Constants
	Pseudo-constant values
	Basic tools for memory allocation

	Local variables with eForth Linux
	Introduction
	The fake stack comment
	Action on local variables

	Data structures for eForth Linux
	Preamble
	Tables in FORTH
	One-dimensional 64-bit data array
	Words for table definitions
	Read and write in a table

	Management of complex structures

	Real numbers with eForth Linux
	The real ones with eForth Linux
	Real number accuracy with eForth Linux
	Real constants and variables
	Arithmetic operators on real numbers
	Mathematical operators on real numbers
	Logical operators on real numbers
	Integer ↔ real transformations

	Displaying numbers and character strings
	Change of numerical base
	Definition of new display formats
	Displaying characters and character strings
	String variables
	Text variable management word code
	Adding character to an alphanumeric variable

	Delayed action words
	Definition and usage of words with defer
	Setting a Forward Reference

	A practical case

	Word Creation Words
	Using does>
	Color management example
	Example, writing in pinyin

	Processing UTF8 characters
	UTF8 encoding
	Retrieve the UTF8 character code entered using the keyboard
	Displaying UTF8 characters from their code

	Encoding from UTF8 character code point
	Re-encoding by recursion
	Generate a UTF8 character table

	Detailed content of eForth Linux vocabularies
	Version v 7.0.7.15
	FORTH
	ansi
	asm
	editor
	graphics
	graphics/internals
	httpd
	internals
	posix
	sockets
	tasks
	telnetd
	termios
	web-interface
	x11

